Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Probabilistic Semantic Communication over Wireless Networks with Rate Splitting (2403.00434v1)

Published 1 Mar 2024 in cs.IT, eess.SP, and math.IT

Abstract: In this paper, the problem of joint transmission and computation resource allocation for probabilistic semantic communication (PSC) system with rate splitting multiple access (RSMA) is investigated. In the considered model, the base station (BS) needs to transmit a large amount of data to multiple users with RSMA. Due to limited communication resources, the BS is required to utilize semantic communication techniques to compress the large-sized data. The semantic communication is enabled by shared probability graphs between the BS and the users. The probability graph can be used to further compress the transmission data at the BS, while the received compressed semantic information can be recovered through using the same shared probability graph at each user side. The semantic information compression progress consumes additional computation power at the BS, which inevitably decreases the transmission power due to limited total power budget. Considering both the effect of semantic compression ratio and computation power, the semantic rate expression for RSMA is first obtained. Then, based on the obtained rate expression, an optimization problem is formulated with the aim of maximizing the sum of semantic rates of all users under total power, semantic compression ratio, and rate allocation constraints. To tackle this problem, an iterative algorithm is proposed, where the rate allocation and transmit beamforming design subproblem is solved using a successive convex approximation method, and the semantic compression ratio subproblem is addressed using a greedy algorithm. Numerical results validate the effectiveness of the proposed scheme.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. W. Xu, Z. Yang, D. W. K. Ng, M. Levorato, Y. C. Eldar, and M. Debbah, “Edge learning for B5G networks with distributed signal processing: Semantic communication, edge computing, and wireless sensing,” IEEE J. Sel. Topics Signal Process., vol. 17, no. 1, pp. 9–39, Jan. 2023.
  2. X. Luo, H.-H. Chen, and Q. Guo, “Semantic communications: Overview, open issues, and future research directions,” IEEE Wireless Commun., vol. 29, no. 1, pp. 210–219, Jan. 2022.
  3. C. Chaccour, W. Saad, M. Debbah, Z. Han, and H. V. Poor, “Less data, more knowledge: Building next generation semantic communication networks,” arXiv preprint arXiv:2211.14343, Nov. 2022.
  4. Z. Qin, X. Tao, J. Lu, W. Tong, and G. Y. Li, “Semantic communications: Principles and challenges,” arXiv preprint arXiv:2201.01389, Jan. 2021.
  5. D. Gündüz, Z. Qin, I. E. Aguerri, H. S. Dhillon, Z. Yang, A. Yener, K. K. Wong, and C.-B. Chae, “Beyond transmitting bits: Context, semantics, and task-oriented communications,” IEEE J. Sel. Areas Commun., vol. 41, no. 1, pp. 5–41, Nov. 2023.
  6. Z. Zhao, Z. Yang, Y. Hu, L. Lin, and Z. Zhang, “Semantic information extraction for text data with probability graph,” in 2023 IEEE/CIC Int. Conf. Commun. China (ICCC Workshops), Aug. 2023.
  7. Z. Yang, M. Chen, Z. Zhang, and C. Huang, “Energy efficient semantic communication over wireless networks with rate splitting,” IEEE J. Sel. Areas Commun., vol. 41, no. 5, pp. 1484–1495, Jan. 2023.
  8. Z. Yang, M. Chen, G. Li, Y. Yang, and Z. Zhang, “Secure semantic communications: Fundamentals and challenges,” arXiv preprint arXiv:2301.01421, Jan. 2023.
  9. K. Niu, J. Dai, S. Yao, S. Wang, Z. Si, X. Qin, and P. Zhang, “A paradigm shift toward semantic communications,” IEEE Commun. Mag., vol. 60, no. 11, pp. 113–119, Nov. 2022.
  10. B. Clerckx, Y. Mao, Z. Yang, M. Chen, A. Alkhateeb, L. Liu, M. Qiu, J. Yuan, V. W. Wong, and J. Montojo, “Multiple access techniques for intelligent and multi-functional 6G: Tutorial, survey, and outlook,” arXiv preprint arXiv:2401.01433, Jan. 2024.
  11. L. Yan, Z. Qin, R. Zhang, Y. Li, and G. Y. Li, “Resource allocation for text semantic communications,” IEEE Wireless Commun. Lett., vol. 11, no. 7, pp. 1394–1398, Jul. 2022.
  12. C. Liu, C. Guo, Y. Yang, and N. Jiang, “Adaptable semantic compression and resource allocation for task-oriented communications,” IEEE Trans. Cogn. Commun. Network., Dec. 2023.
  13. J. Su, Z. Liu, Y.-a. Xie, K. Ma, H. Du, J. Kang, and D. Niyato, “Semantic communication-based dynamic resource allocation in d2d vehicular networks,” IEEE Trans. Veh. Technol., vol. 72, no. 8, pp. 10 784–10 796, Aug. 2023.
  14. G. Ding, G. Yu, J. Yuan, and S. Liu, “Joint urllc traffic scheduling and resource allocation for semantic communication systems,” IEEE Trans. Wireless Commun., Dec. 2023.
  15. X. Mu, Y. Liu, L. Guo, and N. Al-Dhahir, “Heterogeneous semantic and bit communications: A semi-noma scheme,” IEEE J. Sel. Areas Commun., vol. 41, no. 1, pp. 155–169, Jan. 2023.
  16. L. Lin, W. Xu, F. Wang, Y. Zhang, W. Zhang, and P. Zhang, “Channel-transferable semantic communications for multi-user OFDM-NOMA systems,” IEEE Wireless Commun. Lett., Dec. 2023.
  17. Y. Cheng, D. Niyato, H. Du, J. Kang, Z. Xiong, C. Miao, and D. I. Kim, “Resource allocation and common message selection for task-oriented semantic information transmission with rsma,” IEEE Trans. Wireless Commun., Oct. 2023.
  18. C. Zeng, J.-B. Wang, M. Xiao, C. Ding, Y. Chen, H. Yu, and J. Wang, “Task-oriented semantic communication over rate splitting enabled wireless control systems for urllc services,” IEEE Trans. Commun., Oct. 2023.
  19. W. Zhang, K. Bai, S. Zeadally, H. Zhang, H. Shao, H. Ma, and V. C. M. Leung, “Deepma: End-to-end deep multiple access for wireless image transmission in semantic communication,” IEEE Trans. Cogn. Commun. Network., Oct. 2023.
  20. H. Zhang, H. Wang, Y. Li, K. Long, and A. Nallanathan, “DRL-driven dynamic resource allocation for task-oriented semantic communication,” IEEE Trans. Commun., vol. 71, no. 7, pp. 3992–4004, Jul. 2023.
  21. Z. Hu, T. Liu, C. You, Z. Yang, and M. Chen, “Multiuser resource allocation for semantic-relay-aided text transmissions,” arXiv preprint arXiv:2311.06854, Nov. 2023.
  22. Z. Zhao, Z. Yang, X. Gan, Q.-V. Pham, C. Huang, W. Xu, and Z. Zhang, “A joint communication and computation design for semantic wireless communication with probability graph,” arXiv preprint arXiv:2312.13975, 2023.
  23. Z. Zhao, Z. Yang, Q.-V. Pham, Q. Yang, and Z. Zhang, “Semantic communication with probability graph: A joint communication and computation design,” in 2023 IEEE 98th Veh. Technol. Conf. (VTC2023-Fall), Oct. 2023.
  24. Y. Cang, M. Chen, Z. Yang, Y. Hu, Y. Wang, C. Huang, and Z. Zhang, “Online resource allocation for semantic-aware edge computing systems,” IEEE Internet Things J., Oct. 2023.
  25. Y. Mao, O. Dizdar, B. Clerckx, R. Schober, P. Popovski, and H. V. Poor, “Rate-splitting multiple access: Fundamentals, survey, and future research trends,” IEEE Commun. Surv. Tutor., vol. 24, no. 4, pp. 2073–2126, Jul. 2022.
  26. B. Clerckx, Y. Mao, E. A. Jorswieck, J. Yuan, D. J. Love, E. Erkip, and D. Niyato, “A primer on rate-splitting multiple access: Tutorial, myths, and frequently asked questions,” IEEE J. Sel. Areas Commun., vol. 41, no. 5, pp. 1265–1308, May 2023.
  27. Y. Mao, B. Clerckx, and V. O. Li, “Rate-splitting multiple access for downlink communication systems: Bridging, generalizing, and outperforming sdma and noma,” EURASIP J. Wireless Commmu. Network., vol. 2018, pp. 1–54, May 2018.
  28. S. Ji, S. Pan, E. Cambria, P. Marttinen, and P. S. Yu, “A survey on knowledge graphs: Representation, acquisition, and applications,” IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 2, pp. 494–514, Feb. 2022.
  29. J. Li, A. Sun, J. Han, and C. Li, “A survey on deep learning for named entity recognition,” IEEE Trans. Knowl. Data Eng., vol. 34, no. 1, pp. 50–70, Jan. 2022.
  30. Y. Hu, H. Shen, W. Liu, F. Min, X. Qiao, and K. Jin, “A graph convolutional network with multiple dependency representations for relation extraction,” IEEE Access, vol. 9, pp. 81 575–81 587, Jun. 2021.
  31. Z. Yang, M. Chen, W. Saad, and M. Shikh-Bahaei, “Optimization of rate allocation and power control for rate splitting multiple access (rsma),” IEEE Trans. Commun., vol. 69, no. 9, pp. 5988–6002, Jun. 2021.
  32. M. S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret, “Applications of second-order cone programming,” Linear algebra and its applications, vol. 284, no. 1-3, pp. 193–228, Nov. 1998.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com