Quantum Simulation of the First-Quantized Pauli-Fierz Hamiltonian (2306.11198v2)
Abstract: We provide an explicit recursive divide and conquer approach for simulating quantum dynamics and derive a discrete first quantized non-relativistic QED Hamiltonian based on the many-particle Pauli Fierz Hamiltonian. We apply this recursive divide and conquer algorithm to this Hamiltonian and compare it to a concrete simulation algorithm that uses qubitization. Our divide and conquer algorithm, using lowest order Trotterization, scales for fixed grid spacing as $\widetilde{O}(\Lambda N2\eta2 t2 /\epsilon)$ for grid size $N$, $\eta$ particles, simulation time $t$, field cutoff $\Lambda$ and error $\epsilon$. Our qubitization algorithm scales as $\widetilde{O}(N(\eta+N)(\eta +\Lambda2) t\log(1/\epsilon)) $. This shows that even a na\"ive partitioning and low-order splitting formula can yield, through our divide and conquer formalism, superior scaling to qubitization for large $\Lambda$. We compare the relative costs of these two algorithms on systems that are relevant for applications such as the spontaneous emission of photons, and the photoionization of electrons. We observe that for different parameter regimes, one method can be favored over the other. Finally, we give new algorithmic and circuit level techniques for gate optimization including a new way of implementing a group of multi-controlled-X gates that can be used for better analysis of circuit cost.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.