Metal-insulator transition and magnetism of SU(3) fermions in the square lattice (2306.10644v2)
Abstract: We study the SU(3) symmetric Fermi-Hubbard model (FHM) in the square lattice at $1/3$-filling using numerically exact determinant quantum Monte Carlo (DQMC) and numerical linked-cluster expansion (NLCE) techniques. We present the different regimes of the model in the $T-U$ plane, which are characterized by local and short-range correlations, and capture signatures of the metal-insulator transition and magnetic crossovers. These signatures are detected as the temperature scales characterizing the rise of the compressibility, and an interaction-dependent change in the sign of the diagonal spin-spin correlation function. The analysis of the compressibility estimates the location of the metal-insulator quantum critical point at $U_c/t \sim 6$, and provides a temperature scale for observing Mott physics at finite-$T$. Furthermore, from the analysis of the spin-spin correlation function we observe that for $U/t \gtrsim6$ and $T \sim J = 4t2/U$ there is a development of a short-range two sublattice (2-SL) antiferromagnetic structure, as well as an emerging three sublattice (3-SL) antiferromagnetic structure as the temperature is lowered below $T/J \lesssim 0.57$. This crossover from 2-SL to 3-SL magnetic ordering agrees with Heisenberg limit predictions, and has observable effects on the density of on-site pairs. Finally, we describe how the features of the regimes in the $T$-$U$ plane can be explored with alkaline-earth-like atoms in optical lattices with currently-achieved experimental techniques and temperatures. The results discussed in this manuscript provide a starting point for the exploration of the SU(3) FHM upon doping.
- Y. Tokura, Orbital Physics in Transition-Metal Oxides, Science 288, 462 (2000).
- M. Hermele, V. Gurarie, and A. M. Rey, Mott insulators of ultracold fermionic alkaline earth atoms: Underconstrained magnetism and chiral spin liquid, Phys. Rev. Lett. 103, 135301 (2009).
- M. Hermele and V. Gurarie, Topological liquids and valence cluster states in two-dimensional SU(N)𝑁(N)( italic_N ) magnets, Phys. Rev. B 84, 174441 (2011).
- P. Nataf and F. Mila, Exact Diagonalization of Heisenberg SU(N𝑁Nitalic_N) Models, Phys. Rev. Lett. 113, 127204 (2014).
- C. Wu, Hidden Symmetry and Quantum Phases in Spin-3/2 Cold Atomic Systems, Mod. Phys. Lett. B 20, 1707 (2006).
- M. A. Cazalilla, A. F. Ho, and M. Ueda, Ultracold gases of ytterbium: Ferromagnetism and Mott states in an SU(6) Fermi system, New J. Phys. 11, 103033 (2009).
- M. A. Cazalilla and A. M. Rey, Ultracold Fermi gases with emergent SU(N𝑁Nitalic_N) symmetry, Rep. Prog. Phys. 77, 124401 (2014).
- C. Gross and I. Bloch, Quantum simulations with ultracold atoms in optical lattices, Science 357, 995 (2017).
- I. Bloch, J. Dalibard, and S. Nascimbène, Quantum simulations with ultracold quantum gases, Nat. Phys. 8, 267 (2012).
- A. Sotnikov, Critical entropies and magnetic-phase-diagram analysis of ultracold three-component fermionic mixtures in optical lattices, Phys. Rev. A 92, 023633 (2015).
- A. Sotnikov and W. Hofstetter, Magnetic ordering of three-component ultracold fermionic mixtures in optical lattices, Phys. Rev. A 89, 063601 (2014).
- H. Yanatori and A. Koga, Finite-temperature phase transitions in the SU(N)𝑁({N})( italic_N ) Hubbard model, Phys. Rev. B 94, 041110(R) (2016).
- W. Nie, D. Zhang, and W. Zhang, Ferromagnetic ground state of the SU(3) Hubbard model on the Lieb lattice, Phys. Rev. A 96, 053616 (2017).
- M. Hafez-Torbati and W. Hofstetter, Artificial SU(3) spin-orbit coupling and exotic Mott insulators, Phys. Rev. B 98, 245131 (2018).
- M. Hafez-Torbati and W. Hofstetter, Competing charge and magnetic order in fermionic multicomponent systems, Phys. Rev. B 100, 035133 (2019).
- A. Pérez-Romero, R. Franco, and J. Silva-Valencia, Phase diagram of the SU(3) Fermi Hubbard model with next-neighbor interactions, Euro Phys J B 94, 229 (2021).
- C. Honerkamp and W. Hofstetter, Ultracold fermions and the SU(N𝑁Nitalic_N) Hubbard Model, Phys. Rev. Lett. 92, 170403 (2004).
- C. Romen and A. M. Läuchli, Structure of spin correlations in high-temperature SU(N𝑁Nitalic_N) quantum magnets, Phys. Rev. Research 2, 043009 (2020).
- R. Blankenbecler, D. J. Scalapino, and R. L. Sugar, Monte Carlo calculations of coupled boson-fermion systems. I, Phys. Rev. D 24, 2278 (1981).
- M. Rigol, T. Bryant, and R. R. P. Singh, Numerical linked-cluster approach to quantum lattice models, Phys. Rev. Lett. 97, 187202 (2006).
- B. Tang, E. Khatami, and M. Rigol, A short introduction to numerical linked-cluster expansions, Computer Physics Communications 184, 557 (2013).
- The Manhattan distance between two points is the sum of the absolute differences of their Cartesian coordinates.
- R. T. Scalettar, R. M. Noack, and R. R. P. Singh, Ergodicity at large couplings with the determinant Monte Carlo algorithm, Phys. Rev. B 44, 10502 (1991).
- J. Kokalj and R. H. McKenzie, Thermodynamics of a bad metal–Mott insulator transition in the presence of frustration, Phys. Rev. Lett. 110, 206402 (2013).
- Q. Zhou and T.-L. Ho, Universal thermometry for quantum simulation, Phys. Rev. Lett. 106, 225301 (2011).
- F. Grusdt, A. Bohrdt, and E. Demler, Microscopic spinon-chargon theory of magnetic polarons in the t−J𝑡𝐽t\text{$-$}{J}italic_t - italic_J model, Phys. Rev. B 99, 224422 (2019).
- A. Bohrdt, F. Grusdt, and M. Knap, Dynamical formation of a magnetic polaron in a two-dimensional quantum antiferromagnet, New J. Phys. 22, 123023 (2021a).
- F. Grusdt, E. Demler, and A. Bohrdt, Pairing of holes by confining strings in antiferromagnets, SciPost Phys. 14, 090 (2023).
- S. Sorella, Y. Otsuka, and S. Yunoki, Absence of a spin liquid phase in the Hubbard model on the honeycomb lattice, Sci. Rep. 2, 992 (2012).
- F. F. Assaad and I. F. Herbut, Pinning the order: The nature of quantum criticality in the Hubbard model on honeycomb lattice, Phys. Rev. X 3, 031010 (2013).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.