Papers
Topics
Authors
Recent
Search
2000 character limit reached

Bayesian Extensive-Rank Matrix Factorization with Rotational Invariant Priors

Published 7 Jun 2023 in cs.IT and math.IT | (2306.04592v1)

Abstract: We consider a statistical model for matrix factorization in a regime where the rank of the two hidden matrix factors grows linearly with their dimension and their product is corrupted by additive noise. Despite various approaches, statistical and algorithmic limits of such problems have remained elusive. We study a Bayesian setting with the assumptions that (a) one of the matrix factors is symmetric, (b) both factors as well as the additive noise have rotational invariant priors, (c) the priors are known to the statistician. We derive analytical formulas for Rotation Invariant Estimators to reconstruct the two matrix factors, and conjecture that these are optimal in the large-dimension limit, in the sense that they minimize the average mean-square-error. We provide numerical checks which confirm the optimality conjecture when confronted to Oracle Estimators which are optimal by definition, but involve the ground-truth. Our derivation relies on a combination of tools, namely random matrix theory transforms, spherical integral formulas, and the replica method from statistical mechanics.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.