Papers
Topics
Authors
Recent
2000 character limit reached

BAA-NGP: Bundle-Adjusting Accelerated Neural Graphics Primitives

Published 7 Jun 2023 in cs.CV | (2306.04166v4)

Abstract: Implicit neural representations have become pivotal in robotic perception, enabling robots to comprehend 3D environments from 2D images. Given a set of camera poses and associated images, the models can be trained to synthesize novel, unseen views. To successfully navigate and interact in dynamic settings, robots require the understanding of their spatial surroundings driven by unassisted reconstruction of 3D scenes and camera poses from real-time video footage. Existing approaches like COLMAP and bundle-adjusting neural radiance field methods take hours to days to process due to the high computational demands of feature matching, dense point sampling, and training of a multi-layer perceptron structure with a large number of parameters. To address these challenges, we propose a framework called bundle-adjusting accelerated neural graphics primitives (BAA-NGP) which leverages accelerated sampling and hash encoding to expedite automatic pose refinement/estimation and 3D scene reconstruction. Experimental results demonstrate 10 to 20 x speed improvement compared to other bundle-adjusting neural radiance field methods without sacrificing the quality of pose estimation. The github repository can be found here https://github.com/IntelLabs/baa-ngp.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.