Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Lattice study on a tetra-quark state $T_{bb}$ in the HAL QCD method (2306.03565v2)

Published 6 Jun 2023 in hep-lat, hep-ph, and nucl-th

Abstract: We study a doubly-bottomed tetra-quark state $(bb\bar{u}\bar{d})$ with quantum number $I(JP)=0(1+)$, denoted by $T_{bb}$, in lattice QCD with the Non-Relativistic QCD (NRQCD) quark action for $b$ quarks. Employing $(2+1)$-flavor gauge configurations at $a \approx 0.09$ {fm} on $323\times 64$ lattices, we have extracted the coupled channel potential between $\bar{B}\bar{B}*$ and $\bar{B}* \bar{B}*$ in the HAL QCD method, which predicts an existence of a bound $T_{bb}$ below the $\bar{B}\bar{B}*$ threshold. By extrapolating results at $m_\pi\approx 410,\, 570,\, 700$ {MeV} to the physical pion mass $m_\pi\approx140$ {MeV}, we obtain a biding energy with its statistical error as $E_{\rm binding}{\rm (single)} = 155(17)$ MeV and $E_{\rm binding}{\rm (coupled)} = 83(10)$ MeV, where coupled" means that effects due to virtual $\bar{B}^* \bar{B}^*$ states are included through the coupled channel potential, while only a potential for a single $\bar{B}\bar{B}^*$ channel is used in the analysis forsingle". A comparison shows that the effect from virtual $\bar{B}* \bar{B}*$ states is quite sizable to the binding energy of $T_{bb}$. We estimate systematic errors to be $\pm 20$ MeV at most, which are mainly caused by the NRQCD approximation for $b$ quarks.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. R. Aaij et al. (LHCb), Phys. Rev. D 102, 112003 (2020), arXiv:2009.00026 [hep-ex] .
  2. R. Aaij et al. (LHCb),   (2021), 10.1038/s41567-022-01614-y, arXiv:2109.01038 [hep-ex] .
  3. R. Aaij et al. (LHCb), Phys. Rev. Lett. 115, 072001 (2015), arXiv:1507.03414 [hep-ex] .
  4. A. Bondar et al. (Belle), Phys. Rev. Lett. 108, 122001 (2012), arXiv:1110.2251 [hep-ex] .
  5. M. Karliner and J. L. Rosner, Phys. Rev. Lett. 119, 202001 (2017), arXiv:1707.07666 [hep-ph] .
  6. E. J. Eichten and C. Quigg, Phys. Rev. Lett. 119, 202002 (2017), arXiv:1707.09575 [hep-ph] .
  7. P. Mohanta and S. Basak, Phys. Rev. D 102, 094516 (2020), arXiv:2008.11146 [hep-lat] .
  8. R. J. Hudspith and D. Mohler,   (2023), arXiv:2303.17295 [hep-lat] .
  9. M. Luscher, Nucl. Phys. B 354, 531 (1991).
  10. J. R. Taylor, The Quantum Theory of Nonrelativistic Collisions (Dover books).
  11. P. A. Zyla et al. (Particle Data Group), PTEP 2020, 083C01 (2020).
  12. B. A. Thacker and G. P. Lepage, Phys. Rev. D 43, 196 (1991).
  13. L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950).
  14. S. Tani, Prog. Theor. Phys. 6, 267.
  15. S. Aoki et al. (PACS-CS), Phys. Rev. D 79, 034503 (2009), arXiv:0807.1661 [hep-lat] .
  16. M. I. Haftel and F. Tabakin, Nucl. Phys. A 158, 1 (1970).
  17. M. Kamimura, Phys. Rev. A 38, 621 (1988).
  18. T. Amagasa et al., J. Phys. Conf. Ser. 664, 042058 (2015).
  19. H. Vogt and M. Schröck, in GPU Computing in High-Energy Physics (2015) pp. 175–180, arXiv:1412.3655 [hep-lat] .
Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.