Lattice study on a tetra-quark state $T_{bb}$ in the HAL QCD method (2306.03565v2)
Abstract: We study a doubly-bottomed tetra-quark state $(bb\bar{u}\bar{d})$ with quantum number $I(JP)=0(1+)$, denoted by $T_{bb}$, in lattice QCD with the Non-Relativistic QCD (NRQCD) quark action for $b$ quarks. Employing $(2+1)$-flavor gauge configurations at $a \approx 0.09$ {fm} on $323\times 64$ lattices, we have extracted the coupled channel potential between $\bar{B}\bar{B}*$ and $\bar{B}* \bar{B}*$ in the HAL QCD method, which predicts an existence of a bound $T_{bb}$ below the $\bar{B}\bar{B}*$ threshold. By extrapolating results at $m_\pi\approx 410,\, 570,\, 700$ {MeV} to the physical pion mass $m_\pi\approx140$ {MeV}, we obtain a biding energy with its statistical error as $E_{\rm binding}{\rm (single)} = 155(17)$ MeV and $E_{\rm binding}{\rm (coupled)} = 83(10)$ MeV, where coupled" means that effects due to virtual $\bar{B}^* \bar{B}^*$ states are included through the coupled channel potential, while only a potential for a single $\bar{B}\bar{B}^*$ channel is used in the analysis for
single". A comparison shows that the effect from virtual $\bar{B}* \bar{B}*$ states is quite sizable to the binding energy of $T_{bb}$. We estimate systematic errors to be $\pm 20$ MeV at most, which are mainly caused by the NRQCD approximation for $b$ quarks.
- R. Aaij et al. (LHCb), Phys. Rev. D 102, 112003 (2020), arXiv:2009.00026 [hep-ex] .
- R. Aaij et al. (LHCb), (2021), 10.1038/s41567-022-01614-y, arXiv:2109.01038 [hep-ex] .
- R. Aaij et al. (LHCb), Phys. Rev. Lett. 115, 072001 (2015), arXiv:1507.03414 [hep-ex] .
- A. Bondar et al. (Belle), Phys. Rev. Lett. 108, 122001 (2012), arXiv:1110.2251 [hep-ex] .
- M. Karliner and J. L. Rosner, Phys. Rev. Lett. 119, 202001 (2017), arXiv:1707.07666 [hep-ph] .
- E. J. Eichten and C. Quigg, Phys. Rev. Lett. 119, 202002 (2017), arXiv:1707.09575 [hep-ph] .
- P. Mohanta and S. Basak, Phys. Rev. D 102, 094516 (2020), arXiv:2008.11146 [hep-lat] .
- R. J. Hudspith and D. Mohler, (2023), arXiv:2303.17295 [hep-lat] .
- M. Luscher, Nucl. Phys. B 354, 531 (1991).
- J. R. Taylor, The Quantum Theory of Nonrelativistic Collisions (Dover books).
- P. A. Zyla et al. (Particle Data Group), PTEP 2020, 083C01 (2020).
- B. A. Thacker and G. P. Lepage, Phys. Rev. D 43, 196 (1991).
- L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950).
- S. Tani, Prog. Theor. Phys. 6, 267.
- S. Aoki et al. (PACS-CS), Phys. Rev. D 79, 034503 (2009), arXiv:0807.1661 [hep-lat] .
- M. I. Haftel and F. Tabakin, Nucl. Phys. A 158, 1 (1970).
- M. Kamimura, Phys. Rev. A 38, 621 (1988).
- T. Amagasa et al., J. Phys. Conf. Ser. 664, 042058 (2015).
- H. Vogt and M. Schröck, in GPU Computing in High-Energy Physics (2015) pp. 175–180, arXiv:1412.3655 [hep-lat] .
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.