Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Adaptable and Interactive Image Captioning with Data Augmentation and Episodic Memory (2306.03500v1)

Published 6 Jun 2023 in cs.CL and cs.CV

Abstract: Interactive machine learning (IML) is a beneficial learning paradigm in cases of limited data availability, as human feedback is incrementally integrated into the training process. In this paper, we present an IML pipeline for image captioning which allows us to incrementally adapt a pre-trained image captioning model to a new data distribution based on user input. In order to incorporate user input into the model, we explore the use of a combination of simple data augmentation methods to obtain larger data batches for each newly annotated data instance and implement continual learning methods to prevent catastrophic forgetting from repeated updates. For our experiments, we split a domain-specific image captioning dataset, namely VizWiz, into non-overlapping parts to simulate an incremental input flow for continually adapting the model to new data. We find that, while data augmentation worsens results, even when relatively small amounts of data are available, episodic memory is an effective strategy to retain knowledge from previously seen clusters.

Summary

We haven't generated a summary for this paper yet.