Papers
Topics
Authors
Recent
Search
2000 character limit reached

Interactive Machine Learning for Image Captioning

Published 28 Feb 2022 in cs.CV and cs.CL | (2202.13623v1)

Abstract: We propose an approach for interactive learning for an image captioning model. As human feedback is expensive and modern neural network based approaches often require large amounts of supervised data to be trained, we envision a system that exploits human feedback as good as possible by multiplying the feedback using data augmentation methods, and integrating the resulting training examples into the model in a smart way. This approach has three key components, for which we need to find suitable practical implementations: feedback collection, data augmentation, and model update. We outline our idea and review different possibilities to address these tasks.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.