Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semantic Interactive Learning for Text Classification: A Constructive Approach for Contextual Interactions (2209.02984v1)

Published 7 Sep 2022 in cs.HC, cs.AI, and cs.LG

Abstract: Interactive Machine Learning (IML) shall enable intelligent systems to interactively learn from their end-users, and is quickly becoming more and more important. Although it puts the human in the loop, interactions are mostly performed via mutual explanations that miss contextual information. Furthermore, current model-agnostic IML strategies like CAIPI are limited to 'destructive' feedback, meaning they solely allow an expert to prevent a learner from using irrelevant features. In this work, we propose a novel interaction framework called Semantic Interactive Learning for the text domain. We frame the problem of incorporating constructive and contextual feedback into the learner as a task to find an architecture that (a) enables more semantic alignment between humans and machines and (b) at the same time helps to maintain statistical characteristics of the input domain when generating user-defined counterexamples based on meaningful corrections. Therefore, we introduce a technique called SemanticPush that is effective for translating conceptual corrections of humans to non-extrapolating training examples such that the learner's reasoning is pushed towards the desired behavior. In several experiments, we show that our method clearly outperforms CAIPI, a state of the art IML strategy, in terms of Predictive Performance as well as Local Explanation Quality in downstream multi-class classification tasks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Sebastian Kiefer (1 paper)
  2. Mareike Hoffmann (1 paper)
Citations (1)

Summary

We haven't generated a summary for this paper yet.