Papers
Topics
Authors
Recent
Search
2000 character limit reached

Two-dimensional Ising and Potts model with long-range bond disorder: a renormalization group approach

Published 2 Jun 2023 in cond-mat.stat-mech and hep-th | (2306.01887v2)

Abstract: In this paper we provide new analytic results on two-dimensional $q$-Potts models ($q \geq 2$) in the presence of bond disorder correlations which decay algebraically with distance with exponent $a$. In particular, our results are valid for the long-range bond disordered Ising model ($q=2$). We implement a renormalization group perturbative approach based on conformal perturbation theory. We extend to the long-range case the RG scheme used in [V. Dotsenko, Nucl. Phys. B 455 701 23] for the short-range disorder. Our approach is based on a $2$-loop order double expansion in the positive parameters $(2-a)$ and $(q-2)$. We will show that the Weinrib-Halperin conjecture for the long-range thermal exponent can be violated for a non-Gaussian disorder. We compute the central charges of the long-range fixed points finding a very good agreement with numerical measurements.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.