Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Labeled Interleaving Distance for Reeb Graphs (2306.01186v1)

Published 1 Jun 2023 in cs.CG, cs.DS, and math.AT

Abstract: Merge trees, contour trees, and Reeb graphs are graph-based topological descriptors that capture topological changes of (sub)level sets of scalar fields. Comparing scalar fields using their topological descriptors has many applications in topological data analysis and visualization of scientific data. Recently, Munch and Stefanou introduced a labeled interleaving distance for comparing two labeled merge trees, which enjoys a number of theoretical and algorithmic properties. In particular, the labeled interleaving distance between merge trees can be computed in polynomial time. In this work, we define the labeled interleaving distance for labeled Reeb graphs. We then prove that the (ordinary) interleaving distance between Reeb graphs equals the minimum of the labeled interleaving distance over all labelings. We also provide an efficient algorithm for computing the labeled interleaving distance between two labeled contour trees (which are special types of Reeb graphs that arise from simply-connected domains). In the case of merge trees, the notion of the labeled interleaving distance was used by Gasparovic et al. to prove that the (ordinary) interleaving distance on the set of (unlabeled) merge trees is intrinsic. As our final contribution, we present counterexamples showing that, on the contrary, the (ordinary) interleaving distance on (unlabeled) Reeb graphs (and contour trees) is not intrinsic. It turns out that, under mild conditions on the labelings, the labeled interleaving distance is a metric on isomorphism classes of Reeb graphs, analogous to the ordinary interleaving distance. This provides new metrics on large classes of Reeb graphs.

Citations (2)

Summary

We haven't generated a summary for this paper yet.