Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Interleaving Distance for Ordered Merge Trees (2312.11113v3)

Published 18 Dec 2023 in cs.CG and cs.DS

Abstract: Merge trees are a common topological descriptor for data with a hierarchical component, such as terrains and scalar fields. The interleaving distance, in turn, is a common distance measure for comparing merge trees. However, the interleaving distance for merge trees is solely based on the hierarchical structure, and disregards any other geometrical or topological properties that might be present in the underlying data. Furthermore, the interleaving distance is NP-hard to compute. In this paper, we introduce a form of ordered merge trees that does capture intrinsic order present in the data. We further define a natural variant of the interleaving distance, the monotone interleaving distance, which is an order preserving distance measure for ordered merge trees. Analogous to the regular interleaving distance for merge trees, we show that the monotone variant has three equivalent definitions in terms of two maps, a single map, or a labelling. The labelling-based definition fairly directly leads to an efficient algorithm for computing the monotone interleaving distance, but unfortunately it computes only an approximation thereof. Instead, we discover a surprising connection between the monotone interleaving distance of ordered merge trees and the Fr\'{e}chet distance of 1D curves. As a result, the monotone interleaving distance between two ordered merge trees of total complexity $n$ can be computed exactly in $\tilde O(n2)$ time. The connection between the monotone interleaving distance and the Fr\'{e}chet distance establishes a new bridge between the fields of computational topology/topological data analysis, where interleaving distances are studied extensively, and computational geometry, where Fr\'{e}chet distances are studied extensively.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. Computing the Gromov-Hausdorff distance for metric trees. ACM Transactions on Algorithms, 14(2):1–20, 2018. \hrefhttps://doi.org/10.1145/3185466 \pathdoi:10.1145/3185466.
  2. Measuring distance between Reeb graphs. In Proc. 30th Symposium on Computational Geometry (SoCG), pages 464–473, 2014. \hrefhttps://doi.org/10.1145/2582112.2582169 \pathdoi:10.1145/2582112.2582169.
  3. Computing the interleaving distance is np-hard. Foundations of Computational Mathematics, 20:1237–1271, 2020. \hrefhttps://doi.org/10.1007/s10208-019-09442-y \pathdoi:10.1007/s10208-019-09442-y.
  4. Computational Complexity of the Interleaving Distance. In Proc. 34th Symposium on Computational Geometry (SoCG), pages 13:1–13:15, 2018. \hrefhttps://doi.org/10.4230/LIPIcs.SoCG.2018.13 \pathdoi:10.4230/LIPIcs.SoCG.2018.13.
  5. Metrics for generalized persistence modules. Foundations of Computational Mathematics, 15(6):1501–1531, 2015. \hrefhttps://doi.org/10.1007/s10208-014-9229-5 \pathdoi:10.1007/s10208-014-9229-5.
  6. P. Bubenik and J.A. Scott. Categorification of persistent homology. Discrete & Computational Geometry, 51(3):600–627, 2014. \hrefhttps://doi.org/10.1007/s00454-014-9573-x \pathdoi:10.1007/s00454-014-9573-x.
  7. Cophenetic metrics for phylogenetic trees, after Sokal and Rohlf. BMC Bioinformatics, 14(3), 2013. \hrefhttps://doi.org/10.1186/1471-2105-14-3 \pathdoi:10.1186/1471-2105-14-3.
  8. Channel migration in experimental river networks mapped by particle image velocimetry. Journal of Geophysical Research: Earth Surface, 127(1):e2021JF006300, 2022. \hrefhttps://doi.org/10.1029/2021JF006300 \pathdoi:10.1029/2021JF006300.
  9. Proximity of persistence modules and their diagrams. In Proc. 25th Symposium on Computational Geometry (SoCG), pages 237–246, 2009. \hrefhttps://doi.org/10.1145/1542362.1542407 \pathdoi:10.1145/1542362.1542407.
  10. Decorated merge trees for persistent topology. Journal of Applied and Computational Topology, 6(3):371–428, 2022. \hrefhttps://doi.org/10.1007/s41468-022-00089-3 \pathdoi:10.1007/s41468-022-00089-3.
  11. Categorified Reeb graphs. Discrete & Computational Geometry, 55(4):854–906, 2016. \hrefhttps://doi.org/10.1007/s00454-016-9763-9 \pathdoi:10.1007/s00454-016-9763-9.
  12. Theory of interleavings on a category with a flow. Theory and Applications of Categories, 33(1):583–607, 2018. URL: \urlhttp://www.tac.mta.ca/tac/volumes/33/21/33-21a.pdf.
  13. Intrinsic interleaving distance for merge trees. \hrefhttps://arxiv.org/abs/1908.00063 \patharXiv:1908.00063.
  14. Topological and geometrical properties of braided streams. Water Resources Research, 6(6):1674–1688, 1970. \hrefhttps://doi.org/10.1029/WR006i006p01674 \pathdoi:10.1029/WR006i006p01674.
  15. Computing representative networks for braided rivers. Journal of Computational Geometry, 10(1):423–443, 2019. \hrefhttps://doi.org/10.20382/jocg.v10i1a14 \pathdoi:10.20382/jocg.v10i1a14.
  16. M. Lesnick. The theory of the interleaving distance on multidimensional persistence modules. Foundations of Computational Mathematics, 15(3):613–650, 2015. \hrefhttps://doi.org/10.1007/s10208-015-9255-y \pathdoi:10.1007/s10208-015-9255-y.
  17. An automatic graph-based method for characterizing multichannel networks. Computers & Geoscience, 166:105180, 2022. \hrefhttps://doi.org/10.1016/j.cageo.2022.105180 \pathdoi:10.1016/j.cageo.2022.105180.
  18. Network concepts to describe channel importance and change in multichannel systems: test results for the jamuna river, bangladesh. Earth Surface Processes and Landforms, 39(6):766–778, 2014. \hrefhttps://doi.org/10.1002/esp.3482 \pathdoi:10.1002/esp.3482.
  19. F. Mémoli and L. Zhou. Persistent homotopy groups of metric spaces. \hrefhttps://arxiv.org/abs/1912.12399 \patharXiv:1912.12399.
  20. Interleaving distance between merge trees. Manuscript, 2013.
  21. E. Munch and A. Stefanou. The ℓ∞superscriptℓ\ell^{\infty}roman_ℓ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT-Cophenetic metric for phylogenetic trees as an interleaving distance. Research in Data Science, 17:109–127, 2019. \hrefhttps://doi.org/10.1007/978-3-030-11566-1_5 \pathdoi:10.1007/978-3-030-11566-1_5.
  22. G. O’Beirne. Waimakariri River (New Zealand), 2017. Image is slightly cropped; accessed on 30/11/2023. Photo is licensed under CC BY 4.0 (\urlhttps://creativecommons.org/licenses/by/4.0/). URL: \urlhttps://commons.wikimedia.org/w/index.php?curid=61302377.
  23. A. Patel. Generalized persistence diagrams. Journal of Applied and Computational Topology, 1(3-4):397–419, 2018. \hrefhttps://doi.org/10.1007/s41468-018-0012-6 \pathdoi:10.1007/s41468-018-0012-6.
  24. E.F. Touli and Y. Wang. FPT-algorithms for computing the Gromov-Hausdorff and interleaving distances between trees. Journal of Computational Geometry, 13:89–124, 2022. \hrefhttps://doi.org/10.20382/jocg.v13i1a4 \pathdoi:10.20382/jocg.v13i1a4.
  25. Geometry aware merge tree comparisons for time-varying data with interleaving distances. IEEE Transactions on Visualization and Computer Graphics, 29(8):3489–3506, 2022. \hrefhttps://doi.org/10.1109/TVCG.2022.3163349 \pathdoi:10.1109/TVCG.2022.3163349.
  26. A structural average of labeled merge trees for uncertainty visualisation. IEEE Transactions on Visualization and Computer Graphics, 26(1), 2020. \hrefhttps://doi.org/10.1109/TVCG.2019.2934242 \pathdoi:10.1109/TVCG.2019.2934242.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com