Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Strong Equivalence of the Interleaving and Functional Distortion Metrics for Reeb Graphs (1412.6646v1)

Published 20 Dec 2014 in math.AT and cs.CG

Abstract: The Reeb graph is a construction that studies a topological space through the lens of a real valued function. It has widely been used in applications, however its use on real data means that it is desirable and increasingly necessary to have methods for comparison of Reeb graphs. Recently, several methods to define metrics on the space of Reeb graphs have been presented. In this paper, we focus on two: the functional distortion distance and the interleaving distance. The former is based on the Gromov--Hausdorff distance, while the latter utilizes the equivalence between Reeb graphs and a particular class of cosheaves. However, both are defined by constructing a near-isomorphism between the two graphs of study. In this paper, we show that the two metrics are strongly equivalent on the space of Reeb graphs. In particular, this gives an immediate proof of bottleneck stability for persistence diagrams in terms of the Reeb graph interleaving distance.

Citations (58)

Summary

We haven't generated a summary for this paper yet.