Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Evaluating Stability in Massive Social Networks: Efficient Streaming Algorithms for Structural Balance (2306.00668v1)

Published 1 Jun 2023 in cs.DS

Abstract: Structural balance theory studies stability in networks. Given a $n$-vertex complete graph $G=(V,E)$ whose edges are labeled positive or negative, the graph is considered \emph{balanced} if every triangle either consists of three positive edges (three mutual friends''), or one positive edge and two negative edges (twofriends'' with a common ``enemy''). From a computational perspective, structural balance turns out to be a special case of correlation clustering with the number of clusters at most two. The two main algorithmic problems of interest are: $(i)$ detecting whether a given graph is balanced, or $(ii)$ finding a partition that approximates the \emph{frustration index}, i.e., the minimum number of edge flips that turn the graph balanced. We study these problems in the streaming model where edges are given one by one and focus on \emph{memory efficiency}. We provide randomized single-pass algorithms for: $(i)$ determining whether an input graph is balanced with $O(\log{n})$ memory, and $(ii)$ finding a partition that induces a $(1 + \varepsilon)$-approximation to the frustration index with $O(n \cdot \text{polylog}(n))$ memory. We further provide several new lower bounds, complementing different aspects of our algorithms such as the need for randomization or approximation. To obtain our main results, we develop a method using pseudorandom generators (PRGs) to sample edges between independently-chosen \emph{vertices} in graph streaming. Furthermore, our algorithm that approximates the frustration index improves the running time of the state-of-the-art correlation clustering with two clusters (Giotis-Guruswami algorithm [SODA 2006]) from $n{O(1/\varepsilon2)}$ to $O(n2\log3{n}/\varepsilon2 + n\log n \cdot (1/\varepsilon){O(1/\varepsilon4)})$ time for $(1+\varepsilon)$-approximation. These results may be of independent interest.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.