Sensitivity analysis for publication bias on the time-dependent summary ROC analysis in meta-analysis of prognosis studies (2305.19741v1)
Abstract: In the analysis of prognosis studies with time-to-event outcomes, dichotomization of patients is often made. As the evaluations of prognostic capacity, the survivals of groups with high/low expression of the biomarker are often estimated by the Kaplan-Meier method, and the difference between groups is summarized via the hazard ratio (HR). The high/low expressions are usually determined by study-specific cutoff values, which brings heterogeneity over multiple prognosis studies and difficulty to synthesizing the results in a simple way. In meta-analysis of diagnostic studies with binary outcomes, the summary receiver operating characteristics (SROC) analysis provides a useful cutoff-free summary over studies. Recently, this methodology has been extended to the time-dependent SROC analysis for time-to-event outcomes in meta-analysis of prognosis studies. In this paper, we propose a sensitivity analysis method for evaluating the impact of publication bias on the time-dependent SROC analysis. Our proposal extends the recently introduced sensitivity analysis method for meta-analysis of diagnostic studies based on the bivariate normal model on sensitivity and specificity pairs. To model the selective publication process specific to prognosis studies, we introduce a trivariate model on the time-dependent sensitivity and specificity and the log-transformed HR. Based on the proved asymptotic property of the trivariate model, we introduce a likelihood based sensitivity analysis method based on the conditional likelihood constrained by the expected proportion of published studies. We illustrate the proposed sensitivity analysis method through the meta-analysis of Ki67 for breast cancer. Simulation studies are conducted to evaluate the performance of the proposed method.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.