Papers
Topics
Authors
Recent
2000 character limit reached

What does the Failure to Reason with "Respectively" in Zero/Few-Shot Settings Tell Us about Language Models? (2305.19597v1)

Published 31 May 2023 in cs.CL and cs.AI

Abstract: Humans can effortlessly understand the coordinate structure of sentences such as "Niels Bohr and Kurt Cobain were born in Copenhagen and Seattle, respectively". In the context of natural language inference (NLI), we examine how LMs reason with respective readings (Gawron and Kehler, 2004) from two perspectives: syntactic-semantic and commonsense-world knowledge. We propose a controlled synthetic dataset WikiResNLI and a naturally occurring dataset NatResNLI to encompass various explicit and implicit realizations of "respectively". We show that fine-tuned NLI models struggle with understanding such readings without explicit supervision. While few-shot learning is easy in the presence of explicit cues, longer training is required when the reading is evoked implicitly, leaving models to rely on common sense inferences. Furthermore, our fine-grained analysis indicates models fail to generalize across different constructions. To conclude, we demonstrate that LMs still lag behind humans in generalizing to the long tail of linguistic constructions.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.