Determination of normalized extremal quasimodular forms of depth 1 with integral Fourier coefficients (2305.18669v1)
Abstract: The main purpose of this paper is to determine all normalized extremal quasimodular forms of depth 1 whose Fourier coefficients are integers. By changing the local parameter at infinity from $q=e{2\pi i \tau}$ to the reciprocal of the elliptic modular $j$-function, we prove that all normalized extremal quasimodular forms of depth 1 have a hypergeometric series expression and that integrality is not affected by this change of parameters. Furthermore, by transforming these hypergeometric series expressions into a certain manageable form related to the Atkin(-like) polynomials and using the lemmas that appeared in the study of $p$-adic hypergeometric series by Dwork and Zudilin, the integrality problem can be reduced to the fact that a polynomial vanishes modulo a prime power, which we prove. We also prove that all extremal quasimodular forms of depth 1 with appropriate weight-dependent leading coefficients have integral Fourier coefficients by focusing on the hypergeometric expression of them.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.