Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

FoPro-KD: Fourier Prompted Effective Knowledge Distillation for Long-Tailed Medical Image Recognition (2305.17421v2)

Published 27 May 2023 in eess.IV, cs.CV, and cs.LG

Abstract: Representational transfer from publicly available models is a promising technique for improving medical image classification, especially in long-tailed datasets with rare diseases. However, existing methods often overlook the frequency-dependent behavior of these models, thereby limiting their effectiveness in transferring representations and generalizations to rare diseases. In this paper, we propose FoPro-KD, a novel framework that leverages the power of frequency patterns learned from frozen pre-trained models to enhance their transferability and compression, presenting a few unique insights: 1) We demonstrate that leveraging representations from publicly available pre-trained models can substantially improve performance, specifically for rare classes, even when utilizing representations from a smaller pre-trained model. 2) We observe that pre-trained models exhibit frequency preferences, which we explore using our proposed Fourier Prompt Generator (FPG), allowing us to manipulate specific frequencies in the input image, enhancing the discriminative representational transfer. 3) By amplifying or diminishing these frequencies in the input image, we enable Effective Knowledge Distillation (EKD). EKD facilitates the transfer of knowledge from pre-trained models to smaller models. Through extensive experiments in long-tailed gastrointestinal image recognition and skin lesion classification, where rare diseases are prevalent, our FoPro-KD framework outperforms existing methods, enabling more accessible medical models for rare disease classification. Code is available at https://github.com/xmed-lab/FoPro-KD.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger, and I. Sutskever, “Learning transferable visual models from natural language supervision,” in ICML, 2021.
  2. K. He, H. Fan, Y. Wu, S. Xie, and R. B. Girshick, “Momentum contrast for unsupervised visual representation learning,” CVPR, pp. 9726–9735, 2020.
  3. J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. H. Richemond, E. Buchatskaya, C. Doersch, B. A. Pires, Z. D. Guo, M. G. Azar, B. Piot, K. Kavukcuoglu, R. Munos, and M. Valko, “Bootstrap your own latent a new approach to self-supervised learning,” in NeurIPS, (Red Hook, NY, USA), Curran Associates Inc., 2020.
  4. A. Yu, Y. Yang, and A. Townsend, “Tuning frequency bias in neural network training with nonuniform data,” in ICLR, 2023.
  5. A. Kumar, A. Raghunathan, R. M. Jones, T. Ma, and P. Liang, “Fine-tuning can distort pretrained features and underperform out-of-distribution,” in ICLR, 2022.
  6. M. Jia, L. Tang, B.-C. Chen, C. Cardie, S. Belongie, B. Hariharan, and S.-N. Lim, “Visual prompt tuning,” in European Conference on Computer Vision (ECCV), 2022.
  7. B. Dong, P. Zhou, S. Yan, and W. Zuo, “LPT: Long-tailed prompt tuning for image classification,” in ICLR, 2023.
  8. J. Bai, L. Yuan, S.-T. Xia, S. Yan, Z. Li, and W. Liu, “Improving vision transformers by revisiting high-frequency components,” in ECCV, 2022.
  9. J. Huang, D. Guan, A. Xiao, and S. Lu, “Rda: Robust domain adaptation via fourier adversarial attacking,” ICCV, pp. 8968–8979, 2021.
  10. M. Kim, D. Li, and T. Hospedales, “Domain generalisation via domain adaptation: An adversarial fourier amplitude approach,” in ICLR, 2023.
  11. C. Chen, Z. Li, C. Ouyang, M. Sinclair, W. Bai, and D. Rueckert, “MaxStyle: Adversarial style composition for robust medical image segmentation,” in MICCAI, 2022.
  12. S. Hu, Z. Liao, and Y. Xia, “Prosfda: Prompt learning based source-free domain adaptation for medical image segmentation,” arXiv preprint arXiv:2211.11514, 2022.
  13. Y. Wang, J. Cheng, Y. Chen, S. Shao, L. Zhu, Z. Wu, T. Liu, and H. Zhu, “Fvp: Fourier visual prompting for source-free unsupervised domain adaptation of medical image segmentation,” ArXiv, vol. abs/2304.13672, 2023.
  14. C. Yang, X. Guo, Z. Chen, and Y. Yuan, “Source free domain adaptation for medical image segmentation with fourier style mining,” Medical Image Analysis, vol. 79, p. 102457, 2022.
  15. H. Borgli, V. L. Thambawita, P. H. Smedsrud, S. Hicks, D. Jha, S. L. Eskeland, K. R. Randel, K. Pogorelov, M. Lux, D. T. D. Nguyen, D. Johansen, C. Griwodz, H. K. Stensland, E. Garcia-Ceja, P. T. Schmidt, H. L. Hammer, M. Riegler, P. Halvorsen, and T. de Lange, “Hyperkvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy,” Scientific Data, vol. 7, 2019.
  16. M. Combalia, N. C. F. Codella, V. M. Rotemberg, B. Helba, V. Vilaplana, O. Reiter, A. C. Halpern, S. Puig, and J. Malvehy, “Bcn20000: Dermoscopic lesions in the wild,” ArXiv, vol. abs/1908.02288, 2019.
  17. P. Tschandl, C. Rosendahl, and H. Kittler, “The ham10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions,” Scientific Data, vol. 5, 2018.
  18. H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond empirical risk minimization,” in ICLR, 2018.
  19. A. Galdran, G. Carneiro, and M. A. González Ballester, “Balanced-mixup for highly imbalanced medical image classification,” in Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (M. de Bruijne, P. C. Cattin, S. Cotin, N. Padoy, S. Speidel, Y. Zheng, and C. Essert, eds.), (Cham), pp. 323–333, Springer International Publishing, 2021.
  20. Y. Cui, M. Jia, T.-Y. Lin, Y. Song, and S. Belongie, “Class-balanced loss based on effective number of samples,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 9268–9277, 2019.
  21. K. Cao, C. Wei, A. Gaidon, N. Arechiga, and T. Ma, “Learning imbalanced datasets with label-distribution-aware margin loss,” in Advances in Neural Information Processing Systems, 2019.
  22. J. Ren, C. Yu, S. Sheng, X. Ma, H. Zhao, S. Yi, and H. Li, “Balanced meta-softmax for long-tailed visual recognition,” in Proceedings of Neural Information Processing Systems(NeurIPS), Dec 2020.
  23. B. Kang, S. Xie, M. Rohrbach, Z. Yan, A. Gordo, J. Feng, and Y. Kalantidis, “Decoupling representation and classifier for long-tailed recognition,” in ICLR, 2020.
  24. G. Zhao, W. Yang, X. Ren, L. Li, and X. Sun, “Well-classified examples are underestimated in classification with deep neural networks,” in AAAI Conference on Artificial Intelligence, 2021.
  25. K. Tang, M. Tao, J. Qi, Z. Liu, and H. Zhang, “Invariant feature learning for generalized long-tailed classification,” in ECCV, p. 709–726, 2022.
  26. L. Ju et al., “Flexible sampling for long-tailed skin lesion classification,” in Medical Image Computing and Computer Assisted Intervention – MICCAI 2022, (Cham), pp. 462–471, Springer Nature Switzerland, 2022.
  27. S. Zhang, C. Chen, X. Hu, and S. Peng, “Balanced knowledge distillation for long-tailed learning,” Neurocomputing, vol. 527, pp. 36–46, 2023.
  28. X. Ding, Z. Liu, and X. Li, “Free lunch for surgical video understanding by distilling self-supervisions,” in MICCAI 2022 (L. Wang, Q. Dou, P. T. Fletcher, S. Speidel, and S. Li, eds.), vol. 13437 of Lecture Notes in Computer Science, pp. 365–375, Springer, 2022.
  29. M. Mirza and S. Osindero, “Conditional generative adversarial nets,” 2014. cite arxiv:1411.1784.
  30. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical image database,” in 2009 IEEE conference on computer vision and pattern recognition, pp. 248–255, Ieee, 2009.
  31. J. Ye, Y. Ji, X. Wang, X. Gao, and M. Song, “Data-free knowledge amalgamation via group-stack dual-gan,” in CVPR, pp. 12513–12522, 2020.
  32. G. Fang, J. Song, X. Wang, C. Shen, X. Wang, and M. Song, “Contrastive model inversion for data-free knowledge distillation,” arXiv preprint arXiv:2105.08584, 2021.
  33. D. Chen, J.-P. Mei, H. Zhang, C. Wang, Y. Feng, and C. Chen, “Knowledge distillation with the reused teacher classifier,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11933–11942, 2022.
  34. I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. C. Courville, and Y. Bengio, “Generative adversarial nets,” in NIPS, 2014.
  35. A. Reinke et al., “Metrics reloaded - a new recommendation framework for biomedical image analysis validation,” in Medical Imaging with Deep Learning, 2022.
  36. Y. Zhang, B. Kang, B. Hooi, S. Yan, and J. Feng, “Deep long-tailed learning: A survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, pp. 10795–10816, 2021.
  37. G. Holste, S. Wang, Z. Jiang, T. C. Shen, G. Shih, R. M. Summers, Y. Peng, and Z. Wang, “Long-tailed classification of thorax diseases on chest x-ray: A new benchmark study,” in Data Augmentation, Labelling, and Imperfections (H. V. Nguyen, S. X. Huang, and Y. Xue, eds.), (Cham), pp. 22–32, Springer Nature Switzerland, 2022.
  38. I. Loshchilov and F. Hutter, “SGDR: Stochastic gradient descent with warm restarts,” in ICLR, 2017.
  39. J. Bai, Z. Liu, H. Wang, J. Hao, Y. FENG, H. Chu, and H. Hu, “On the effectiveness of out-of-distribution data in self-supervised long-tail learning.,” in The Eleventh International Conference on Learning Representations, 2023.
  40. T. Makino, S. Jastrzebski, W. Oleszkiewicz, C. Chacko, R. Ehrenpreis, N. Samreen, C. Chhor, E. Kim, J. Lee, K. Pysarenko, B. Reig, H. Toth, D. Awal, L. Du, A. Kim, J. Park, D. K. Sodickson, L. Heacock, L. Moy, K. Cho, and K. J. Geras, “Differences between human and machine perception in medical diagnosis,” Scientific Reports, vol. 12, 2020.
Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.