Faraday rotation and transmittance as markers of topological phase transitions in 2D materials (2305.14923v3)
Abstract: We analyze the magneto-optical conductivity (and related magnitudes like transmittance and Faraday rotation of the irradiated polarized light) of some elemental two-dimensional Dirac materials of group IV (graphene analogues, buckled honeycomb lattices, like silicene, germanene, stannane, etc.), group V (phosphorene), and zincblende heterostructures (like HgTe/CdTe quantum wells) near the Dirac and gamma points, under out-of-plane magnetic and electric fields, to characterize topological-band insulator phase transitions and their critical points. We provide plots of the Faraday angle and transmittance as a function of the polarized light frequency, for different external electric and magnetic fields, chemical potential, HgTe layer thickness and temperature, to tune the material magneto-optical properties. We have shown that absortance/transmittance acquires extremal values at the critical point, where the Faraday angle changes sign, thus providing fine markers of the topological phase transition. In the case of non-topological materials as phosphorene, a minimum of the transmittance is also observed due to the energy gap closing by an external electric field.
- I. Fialkovsky and D. V. Vassilevich, Faraday rotation in graphene, The European Physical Journal B 85, 384 (2012).
- M. Tymchenko, A. Y. Nikitin, and L. Martín-Moreno, Faraday rotation due to excitation of magnetoplasmons in graphene microribbons, ACS Nano 7, 9780 (2013).
- F. Yang, X. Xu, and R.-B. Liu, Giant faraday rotation induced by the berry phase in bilayer graphene under strong terahertz fields, New Journal of Physics 16, 043014 (2014).
- M. J. Spencer and T. M. (Eds.), Silicene: Structure, Properties and Applications, (Springer Series in Materials Science vol. 235, 2016).
- C. J. Tabert and E. J. Nicol, Magneto-optical conductivity of silicene and other buckled honeycomb lattices, Phys. Rev. B 88, 085434 (2013a).
- M. Shah and M. S. Anwar, Magneto-optical effects in the landau level manifold of 2d lattices with spin-orbit interaction, Opt. Express 27, 23217 (2019).
- P. Nualpijit and B. Soodchomshom, Enhanced faraday rotation and control of pure spin-valley optical conductivity by topological phase in silicene, Physica E: Low-dimensional Systems and Nanostructures 137, 115011 (2022).
- S.-Q. Shen, Topological Insulators: Dirac Equation in Condensed Matters (Springer-Verlag Berlin Heidelberg, 2012).
- B. A. Bernevig, Topological Insulators and Topological Superconductors (Princeton University Press, 2013).
- L. O. J. K. Asboth and A. S. A. Palyi, A Short Course on Topological Insulators: Band Structure and Edge States in One and Two Dimensions (Springer International Publishing Switzerland, 2016).
- A. G. Ardakani and Z. Zare, Strong faraday rotation in a topological insulator single layer using dielectric multilayered structures, J. Opt. Soc. Am. B 38, 2562 (2021).
- Y. Liang, Y. Xiang, and X. Dai, Enhancement of graphene faraday rotation in the one-dimensional topological photonic crystals, Opt. Express 28, 24560 (2020).
- M. Calixto and E. Romera, Identifying topological-band insulator transitions in silicene and other 2d gapped dirac materials by means of rényi-wehrl entropy, EPL (Europhysics Letters) 109, 40003 (2015a).
- E. Romera and M. Calixto, Uncertainty relations and topological-band insulator transitions in 2d gapped dirac materials, Journal of Physics: Condensed Matter 27, 175003 (2015a).
- M. Calixto and E. Romera, Inverse participation ratio and localization in topological insulator phase transitions, Journal of Statistical Mechanics: Theory and Experiment 2015, P06029 (2015b).
- E. Romera and M. Calixto, Band inversion at critical magnetic fields in a silicene quantum dot, EPL (Europhysics Letters) 111, 37006 (2015b).
- O. Castaños, E. Romera, and M. Calixto, Information theoretic analysis of landau levels in monolayer phosphorene under magnetic and electric fields, Materials Research Express 6, 106316 (2019).
- M. Calixto, E. Romera, and O. Castaños, Analogies between the topological insulator phase of 2d dirac materials and the superradiant phase of atom-field systems, International Journal of Quantum Chemistry 121, e26464 (2021), https://onlinelibrary.wiley.com/doi/pdf/10.1002/qua.26464 .
- D. Xiao, M.-C. Chang, and Q. Niu, Berry phase effects on electronic properties, Rev. Mod. Phys. 82, 1959 (2010).
- C. L. Kane and E. J. Mele, Quantum spin hall effect in graphene, Phys. Rev. Lett. 95, 226801 (2005).
- N. D. Drummond, V. Zólyomi, and V. I. Fal’ko, Electrically tunable band gap in silicene, Phys. Rev. B 85, 075423 (2012).
- C.-C. Liu, W. Feng, and Y. Yao, Quantum spin hall effect in silicene and two-dimensional germanium, Phys. Rev. Lett. 107, 076802 (2011a).
- C.-C. Liu, H. Jiang, and Y. Yao, Low-energy effective hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin, Phys. Rev. B 84, 195430 (2011b).
- S. Trivedi, A. Srivastava, and R. Kurchania, Silicene and Germanene: A First Principle Study of Electronic Structure and Effect of Hydrogenation-Passivation, Journal of Computational and Theoretical Nanoscience 11, 781 (2014).
- L. Stille, C. J. Tabert, and E. J. Nicol, Optical signatures of the tunable band gap and valley-spin coupling in silicene, Phys. Rev. B 86, 195405 (2012).
- C. J. Tabert and E. J. Nicol, Valley-spin polarization in the magneto-optical response of silicene and other similar 2d crystals, Phys. Rev. Lett. 110, 197402 (2013b).
- M. Tahir and U. Schwingenschlögl, Valley polarized quantum hall effect and topological insulator phase transitions in silicene, Scientific Reports 3, 1075 (2013).
- B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Quantum spin hall effect and topological phase transition in HgTe quantum wells, Science 314, 1757 (2006), https://www.science.org/doi/pdf/10.1126/science.1133734 .
- X.-L. Qi and S.-C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83, 1057 (2011).
- B. Scharf, A. Matos-Abiague, and J. Fabian, Magnetic properties of HgTe quantum wells, Phys. Rev. B 86, 075418 (2012).
- For details, see the Supplemental Material at, URL_will_be_inserted_by_publisher.
- D. Corbridge, Phosphorus: Chemistry, Biochemistry and Technology 6th edn (CRC Press, 2013).
- P. W. Bridgman, Two new modifications of phosphorus., Journal of the American Chemical Society, Journal of the American Chemical Society 36, 1344 (1914).
- P. W. Bridgman, Further note on black phosphorus., Journal of the American Chemical Society, Journal of the American Chemical Society 38, 609 (1916).
- Z. Zhu and D. Tománek, Semiconducting layered blue phosphorus: A computational study, Phys. Rev. Lett. 112, 176802 (2014).
- J. Guan, Z. Zhu, and D. Tománek, Phase coexistence and metal-insulator transition in few-layer phosphorene: A computational study, Phys. Rev. Lett. 113, 046804 (2014).
- R. Wan, X. Cao, and J. Guo, Simulation of phosphorene schottky-barrier transistors, Applied Physics Letters 105, 163511 (2014), https://doi.org/10.1063/1.4900410 .
- A. N. Rudenko and M. I. Katsnelson, Quasiparticle band structure and tight-binding model for single- and bilayer black phosphorus, Phys. Rev. B 89, 201408 (2014).
- M. Ezawa, Topological origin of quasi-flat edge band in phosphorene, New Journal of Physics 16, 115004 (2014).
- A. S. Rodin, A. Carvalho, and A. H. Castro Neto, Strain-induced gap modification in black phosphorus, Phys. Rev. Lett. 112, 176801 (2014).
- M. Ezawa, Highly anisotropic physics in phosphorene, Journal of Physics: Conference Series 603, 012006 (2015).
- C. Dutreix, E. A. Stepanov, and M. I. Katsnelson, Laser-induced topological transitions in phosphorene with inversion symmetry, Phys. Rev. B 93, 241404 (2016).
- N. H. Lindner, G. Refael, and V. Galitski, Floquet topological insulator in semiconductor quantum wells, Nature Physics 7, 490 (2011).
- P. Allen, Chapter 6 electron transport, in Conceptual Foundations of Materials, Contemporary Concepts of Condensed Matter Science, Vol. 2, edited by S. G. Louie and M. L. Cohen (Elsevier, 2006) pp. 165–218.
- T. Stauber, N. M. R. Peres, and A. K. Geim, Optical conductivity of graphene in the visible region of the spectrum, Phys. Rev. B 78, 085432 (2008).
- M. Oliva-Leyva and G. G. Naumis, Tunable dichroism and optical absorption of graphene by strain engineering, 2D Materials 2, 025001 (2015).
- M. Oliva-Leyva and C. Wang, Magneto-optical conductivity of anisotropic two-dimensional Dirac–Weyl materials, Annals of Physics 384, 61 (2017).
- K. Chiu, T. Lee, and J. Quinn, Infrared magneto-transmittance of a two-dimensional electron gas, Surface Science 58, 182 (1976).
- R. F. O’Connell and G. Wallace, Ellipticity and faraday rotation due to a two-dimensional electron gas in a metal-oxide-semiconductor system, Phys. Rev. B 26, 2231 (1982).
- A. Chakraborty, G. Bian, and G. Vignale, Frequency-dependent faraday and kerr rotation in anisotropic nonsymmorphic dirac semimetals in a magnetic field (2023), arXiv:2302.05385 [cond-mat.mes-hall] .
- J. Schiefele, L. Martin-Moreno, and F. Guinea, Faraday effect in rippled graphene: Magneto-optics and random gauge fields, Phys. Rev. B 94, 035401 (2016).
- F. M. D. Pellegrino, G. G. N. Angilella, and R. Pucci, Linear response correlation functions in strained graphene, Phys. Rev. B 84, 195407 (2011).
- M. Farokhnezhad, M. Esmaeilzadeh, and K. Shakouri, Strain-modulated anisotropy of quantum transport properties in single-layer silicene: Spin and valley filtering, Phys. Rev. B 96, 205416 (2017).
- Z. B. Siu and M. B. A. Jalil, Effective hamiltonian for silicene under arbitrary strain from multi-orbital basis, Scientific Reports 11, 7575 (2021).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.