Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Faraday rotation and transmittance as markers of topological phase transitions in 2D materials (2305.14923v3)

Published 24 May 2023 in cond-mat.mes-hall and cond-mat.mtrl-sci

Abstract: We analyze the magneto-optical conductivity (and related magnitudes like transmittance and Faraday rotation of the irradiated polarized light) of some elemental two-dimensional Dirac materials of group IV (graphene analogues, buckled honeycomb lattices, like silicene, germanene, stannane, etc.), group V (phosphorene), and zincblende heterostructures (like HgTe/CdTe quantum wells) near the Dirac and gamma points, under out-of-plane magnetic and electric fields, to characterize topological-band insulator phase transitions and their critical points. We provide plots of the Faraday angle and transmittance as a function of the polarized light frequency, for different external electric and magnetic fields, chemical potential, HgTe layer thickness and temperature, to tune the material magneto-optical properties. We have shown that absortance/transmittance acquires extremal values at the critical point, where the Faraday angle changes sign, thus providing fine markers of the topological phase transition. In the case of non-topological materials as phosphorene, a minimum of the transmittance is also observed due to the energy gap closing by an external electric field.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (54)
  1. I. Fialkovsky and D. V. Vassilevich, Faraday rotation in graphene, The European Physical Journal B 85, 384 (2012).
  2. M. Tymchenko, A. Y. Nikitin, and L. Martín-Moreno, Faraday rotation due to excitation of magnetoplasmons in graphene microribbons, ACS Nano 7, 9780 (2013).
  3. F. Yang, X. Xu, and R.-B. Liu, Giant faraday rotation induced by the berry phase in bilayer graphene under strong terahertz fields, New Journal of Physics 16, 043014 (2014).
  4. M. J. Spencer and T. M. (Eds.), Silicene: Structure, Properties and Applications, (Springer Series in Materials Science vol. 235, 2016).
  5. C. J. Tabert and E. J. Nicol, Magneto-optical conductivity of silicene and other buckled honeycomb lattices, Phys. Rev. B 88, 085434 (2013a).
  6. M. Shah and M. S. Anwar, Magneto-optical effects in the landau level manifold of 2d lattices with spin-orbit interaction, Opt. Express 27, 23217 (2019).
  7. P. Nualpijit and B. Soodchomshom, Enhanced faraday rotation and control of pure spin-valley optical conductivity by topological phase in silicene, Physica E: Low-dimensional Systems and Nanostructures 137, 115011 (2022).
  8. S.-Q. Shen, Topological Insulators: Dirac Equation in Condensed Matters (Springer-Verlag Berlin Heidelberg, 2012).
  9. B. A. Bernevig, Topological Insulators and Topological Superconductors (Princeton University Press, 2013).
  10. L. O. J. K. Asboth and A. S. A. Palyi, A Short Course on Topological Insulators: Band Structure and Edge States in One and Two Dimensions (Springer International Publishing Switzerland, 2016).
  11. A. G. Ardakani and Z. Zare, Strong faraday rotation in a topological insulator single layer using dielectric multilayered structures, J. Opt. Soc. Am. B 38, 2562 (2021).
  12. Y. Liang, Y. Xiang, and X. Dai, Enhancement of graphene faraday rotation in the one-dimensional topological photonic crystals, Opt. Express 28, 24560 (2020).
  13. M. Calixto and E. Romera, Identifying topological-band insulator transitions in silicene and other 2d gapped dirac materials by means of rényi-wehrl entropy, EPL (Europhysics Letters) 109, 40003 (2015a).
  14. E. Romera and M. Calixto, Uncertainty relations and topological-band insulator transitions in 2d gapped dirac materials, Journal of Physics: Condensed Matter 27, 175003 (2015a).
  15. M. Calixto and E. Romera, Inverse participation ratio and localization in topological insulator phase transitions, Journal of Statistical Mechanics: Theory and Experiment 2015, P06029 (2015b).
  16. E. Romera and M. Calixto, Band inversion at critical magnetic fields in a silicene quantum dot, EPL (Europhysics Letters) 111, 37006 (2015b).
  17. O. Castaños, E. Romera, and M. Calixto, Information theoretic analysis of landau levels in monolayer phosphorene under magnetic and electric fields, Materials Research Express 6, 106316 (2019).
  18. M. Calixto, E. Romera, and O. Castaños, Analogies between the topological insulator phase of 2d dirac materials and the superradiant phase of atom-field systems, International Journal of Quantum Chemistry 121, e26464 (2021), https://onlinelibrary.wiley.com/doi/pdf/10.1002/qua.26464 .
  19. D. Xiao, M.-C. Chang, and Q. Niu, Berry phase effects on electronic properties, Rev. Mod. Phys. 82, 1959 (2010).
  20. C. L. Kane and E. J. Mele, Quantum spin hall effect in graphene, Phys. Rev. Lett. 95, 226801 (2005).
  21. N. D. Drummond, V. Zólyomi, and V. I. Fal’ko, Electrically tunable band gap in silicene, Phys. Rev. B 85, 075423 (2012).
  22. C.-C. Liu, W. Feng, and Y. Yao, Quantum spin hall effect in silicene and two-dimensional germanium, Phys. Rev. Lett. 107, 076802 (2011a).
  23. C.-C. Liu, H. Jiang, and Y. Yao, Low-energy effective hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin, Phys. Rev. B 84, 195430 (2011b).
  24. S. Trivedi, A. Srivastava, and R. Kurchania, Silicene and Germanene: A First Principle Study of Electronic Structure and Effect of Hydrogenation-Passivation, Journal of Computational and Theoretical Nanoscience 11, 781 (2014).
  25. L. Stille, C. J. Tabert, and E. J. Nicol, Optical signatures of the tunable band gap and valley-spin coupling in silicene, Phys. Rev. B 86, 195405 (2012).
  26. C. J. Tabert and E. J. Nicol, Valley-spin polarization in the magneto-optical response of silicene and other similar 2d crystals, Phys. Rev. Lett. 110, 197402 (2013b).
  27. M. Tahir and U. Schwingenschlögl, Valley polarized quantum hall effect and topological insulator phase transitions in silicene, Scientific Reports 3, 1075 (2013).
  28. B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Quantum spin hall effect and topological phase transition in HgTe quantum wells, Science 314, 1757 (2006), https://www.science.org/doi/pdf/10.1126/science.1133734 .
  29. X.-L. Qi and S.-C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83, 1057 (2011).
  30. B. Scharf, A. Matos-Abiague, and J. Fabian, Magnetic properties of HgTe quantum wells, Phys. Rev. B 86, 075418 (2012).
  31. For details, see the Supplemental Material at, URL_will_be_inserted_by_publisher.
  32. D. Corbridge, Phosphorus: Chemistry, Biochemistry and Technology 6th edn (CRC Press, 2013).
  33. P. W. Bridgman, Two new modifications of phosphorus., Journal of the American Chemical Society, Journal of the American Chemical Society 36, 1344 (1914).
  34. P. W. Bridgman, Further note on black phosphorus., Journal of the American Chemical Society, Journal of the American Chemical Society 38, 609 (1916).
  35. Z. Zhu and D. Tománek, Semiconducting layered blue phosphorus: A computational study, Phys. Rev. Lett. 112, 176802 (2014).
  36. J. Guan, Z. Zhu, and D. Tománek, Phase coexistence and metal-insulator transition in few-layer phosphorene: A computational study, Phys. Rev. Lett. 113, 046804 (2014).
  37. R. Wan, X. Cao, and J. Guo, Simulation of phosphorene schottky-barrier transistors, Applied Physics Letters 105, 163511 (2014), https://doi.org/10.1063/1.4900410 .
  38. A. N. Rudenko and M. I. Katsnelson, Quasiparticle band structure and tight-binding model for single- and bilayer black phosphorus, Phys. Rev. B 89, 201408 (2014).
  39. M. Ezawa, Topological origin of quasi-flat edge band in phosphorene, New Journal of Physics 16, 115004 (2014).
  40. A. S. Rodin, A. Carvalho, and A. H. Castro Neto, Strain-induced gap modification in black phosphorus, Phys. Rev. Lett. 112, 176801 (2014).
  41. M. Ezawa, Highly anisotropic physics in phosphorene, Journal of Physics: Conference Series 603, 012006 (2015).
  42. C. Dutreix, E. A. Stepanov, and M. I. Katsnelson, Laser-induced topological transitions in phosphorene with inversion symmetry, Phys. Rev. B 93, 241404 (2016).
  43. N. H. Lindner, G. Refael, and V. Galitski, Floquet topological insulator in semiconductor quantum wells, Nature Physics 7, 490 (2011).
  44. P. Allen, Chapter 6 electron transport, in Conceptual Foundations of Materials, Contemporary Concepts of Condensed Matter Science, Vol. 2, edited by S. G. Louie and M. L. Cohen (Elsevier, 2006) pp. 165–218.
  45. T. Stauber, N. M. R. Peres, and A. K. Geim, Optical conductivity of graphene in the visible region of the spectrum, Phys. Rev. B 78, 085432 (2008).
  46. M. Oliva-Leyva and G. G. Naumis, Tunable dichroism and optical absorption of graphene by strain engineering, 2D Materials 2, 025001 (2015).
  47. M. Oliva-Leyva and C. Wang, Magneto-optical conductivity of anisotropic two-dimensional Dirac–Weyl materials, Annals of Physics 384, 61 (2017).
  48. K. Chiu, T. Lee, and J. Quinn, Infrared magneto-transmittance of a two-dimensional electron gas, Surface Science 58, 182 (1976).
  49. R. F. O’Connell and G. Wallace, Ellipticity and faraday rotation due to a two-dimensional electron gas in a metal-oxide-semiconductor system, Phys. Rev. B 26, 2231 (1982).
  50. A. Chakraborty, G. Bian, and G. Vignale, Frequency-dependent faraday and kerr rotation in anisotropic nonsymmorphic dirac semimetals in a magnetic field (2023), arXiv:2302.05385 [cond-mat.mes-hall] .
  51. J. Schiefele, L. Martin-Moreno, and F. Guinea, Faraday effect in rippled graphene: Magneto-optics and random gauge fields, Phys. Rev. B 94, 035401 (2016).
  52. F. M. D. Pellegrino, G. G. N. Angilella, and R. Pucci, Linear response correlation functions in strained graphene, Phys. Rev. B 84, 195407 (2011).
  53. M. Farokhnezhad, M. Esmaeilzadeh, and K. Shakouri, Strain-modulated anisotropy of quantum transport properties in single-layer silicene: Spin and valley filtering, Phys. Rev. B 96, 205416 (2017).
  54. Z. B. Siu and M. B. A. Jalil, Effective hamiltonian for silicene under arbitrary strain from multi-orbital basis, Scientific Reports 11, 7575 (2021).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.