Papers
Topics
Authors
Recent
2000 character limit reached

Fast Variational Inference for Bayesian Factor Analysis in Single and Multi-Study Settings (2305.13188v2)

Published 22 May 2023 in stat.ME and stat.CO

Abstract: Factors models are routinely used to analyze high-dimensional data in both single-study and multi-study settings. Bayesian inference for such models relies on Markov Chain Monte Carlo (MCMC) methods which scale poorly as the number of studies, observations, or measured variables increase. To address this issue, we propose variational inference algorithms to approximate the posterior distribution of Bayesian latent factor models using the multiplicative gamma process shrinkage prior. The proposed algorithms provide fast approximate inference at a fraction of the time and memory of MCMC-based implementations while maintaining comparable accuracy in characterizing the data covariance matrix. We conduct extensive simulations to evaluate our proposed algorithms and show their utility in estimating the model for high-dimensional multi-study gene expression data in ovarian cancers. Overall, our proposed approaches enable more efficient and scalable inference for factor models, facilitating their use in high-dimensional settings. An R package VIMSFA implementing our methods is available on GitHub (github.com/blhansen/VI-MSFA).

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: