Shadowing for local homeomorphisms, with applications to edge shift spaces of infinite graphs (2305.13042v1)
Abstract: In this paper, we develop the basic theory of the shadowing property for local homeomorphisms of metric locally compact spaces, with a focus on applications to edge shift spaces connected with C*-algebra theory. For the local homeomorphism (the Deaconu-Renault system) associated with a direct graph, we completely characterize the shadowing property in terms of conditions on sets of paths. Using these results, we single out classes of graphs for which the associated system presents the shadowing property, fully characterize the shadowing property for systems associated with certain graphs, and show that the system associated with the rose of infinite petals presents the shadowing property and that the Renewal shift system does not present the shadowing property.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.