Efficient Multimodal Neural Networks for Trigger-less Voice Assistants (2305.12063v1)
Abstract: The adoption of multimodal interactions by Voice Assistants (VAs) is growing rapidly to enhance human-computer interactions. Smartwatches have now incorporated trigger-less methods of invoking VAs, such as Raise To Speak (RTS), where the user raises their watch and speaks to VAs without an explicit trigger. Current state-of-the-art RTS systems rely on heuristics and engineered Finite State Machines to fuse gesture and audio data for multimodal decision-making. However, these methods have limitations, including limited adaptability, scalability, and induced human biases. In this work, we propose a neural network based audio-gesture multimodal fusion system that (1) Better understands temporal correlation between audio and gesture data, leading to precise invocations (2) Generalizes to a wide range of environments and scenarios (3) Is lightweight and deployable on low-power devices, such as smartwatches, with quick launch times (4) Improves productivity in asset development processes.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.