Statistical and Observation Comparison of Weyl-Type $f(Q,T)$ Models with the $Λ$CDM Paradigm (2305.11190v5)
Abstract: We study the $f(Q,T)$ gravity in the framework of Weyl geometry (known as Weyl-type $f(Q,T)$ gravity), where $Q$ denotes the non-metricity scalar, and $T$ denotes the energy-momentum tensor trace. In this work, we consider the $f(Q,T)$ model, which is defined as $f(Q,T)=\alpha Q{m+1}+\frac{\beta}{6\kappa2}T$ and investigating two scenarios: $(I)$ $m=0$ (linear model) and $(II)$ $m\neq 0$ (nonlinear model). For both scenarios, we find the explicit solution for the field equations by using the barotropic equation of state as $p=w\rho$, where $w$ is the equation-of-state (EoS) parameter. Further, we study the obtained solutions statistically using the $Pantheon+$ (Without SHOES Calibrated) dataset with 1701 data points. For both models, the best-fit values of model parameters for $1-\sigma$ and $2-\sigma$ confidence level. The higher Hubble constant values in both models emphasize the presence of Tension. We statistically compare our models to the $\Lambda$CDM model using ${{\protect\chi}2_{min}}$, ${{\protect\chi}2_{red}}$, $AIC$, $\Delta AIC$, $BIC$ and $\Delta BIC$. We also examine cosmological parameters such as deceleration and EoS parameters to determine the current acceleration expansion of the Universe. Furthermore, we test our model using $Om$ diagnostic and compare it to the $\Lambda$CDM model to determine its dark energy profile. Finally, we draw the conclusion that statistically speaking, both linear and nonlinear models show good compatibility with the $\Lambda$CDM model.
- arXiv:astro-ph/0104455, doi:10.1086/322348.
- First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Preliminary maps and basic results, Astrophys. J. Suppl. 148 (2003) 1–27. arXiv:astro-ph/0302207, doi:10.1086/377253.
- First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: The Angular power spectrum, Astrophys. J. Suppl. 148 (2003) 135. arXiv:astro-ph/0302217, doi:10.1086/377225.
- arXiv:astro-ph/9904398, doi:10.1142/S0218271800000542.
- arXiv:2307.16308.
- arXiv:1001.3636, doi:10.1088/0264-9381/27/9/095007.
- doi:10.3847/1538-4357/ad5cf4.
- arXiv:2007.01703, doi:10.1016/j.dark.2020.100664.
- doi:10.1016/j.dark.2021.100790. URL http://dx.doi.org/10.1016/j.dark.2021.100790
- doi:10.1088/1402-4896/abaddc. URL http://dx.doi.org/10.1088/1402-4896/abaddc
- doi:10.1140/epjc/s10052-023-11391-4. URL http://dx.doi.org/10.1140/epjc/s10052-023-11391-4
- Observational constraints on Hubble constant and deceleration parameter in power-law cosmology, Mon. Not. Roy. Astron. Soc. 422 (2012) 2532–2538. arXiv:1109.6924, doi:10.1111/j.1365-2966.2012.20810.x.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.