Ranges of polynomials control degree ranks of Green and Tao over finite prime fields (2305.11088v1)
Abstract: Let $p$ be a prime, let $1 \le t < d < p$ be integers, and let $S$ be a non-empty subset of $\mathbb{F}_p$. We establish that if a polynomial $P:\mathbb{F}_pn \to \mathbb{F}_p$ with degree $d$ is such that the image $P(Sn)$ does not contain the full image $A(\mathbb{F}_p)$ of any non-constant polynomial $A: \mathbb{F}_p \to \mathbb{F}_p$ with degree at most $t$, then $P$ coincides on $Sn$ with a polynomial that in particular has bounded degree-$\lfloor d/(t+1) \rfloor$-rank in the sense of Green and Tao. Similarly, we prove that if the assumption holds even for $t=d$, then $P$ coincides on $Sn$ with a polynomial determined by a bounded number of coordinates.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.