Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Potential renormalisation, Lamb shift and mean-force Gibbs state -- to shift or not to shift? (2305.08941v2)

Published 15 May 2023 in quant-ph

Abstract: Often, the microscopic interaction mechanism of an open quantum system gives rise to a counter term' which renormalises the system Hamiltonian. Such term compensates for the distortion of the system's potential due to the finite coupling to the environment. Even if the coupling is weak, the counter term is, in general, not negligible. Similarly, weak-coupling master equations feature a number ofLamb-shift terms' which, contrary to popular belief, cannot be neglected. Yet, the practice of vanishing both counter term and Lamb shift when dealing with master equations is almost universal; and, surprisingly, it can yield better results. By accepting the conventional wisdom, one may approximate the dynamics more accurately and, importantly, the resulting master equation is guaranteed to equilibrate to the correct steady state in the high-temperature limit. In this paper we discuss why is this the case. Specifically, we show that, if the potential distortion is small -- but non-negligible -- the counter term does not influence any dissipative processes to second order in the coupling. Furthermore, we show that, for large environmental cutoff, the Lamb-shift terms approximately cancel any coherent effects due to the counter term -- this renders the combination of both contributions irrelevant in practice. We thus provide precise conditions under which the open-system folklore regarding Lamb shift and counter terms is rigorously justified.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. Introduction to Quantum Thermodynamics: History and Prospects, pages 1–33. Springer International Publishing, Cham, 2018. ISBN 978-3-319-99046-0. doi: 10.1007/978-3-319-99046-0_1. URL https://doi.org/10.1007/978-3-319-99046-0_1.
  2. Robert Alicki. The quantum open system as a model of the heat engine. J. Phys. A., 12(5):L103–L107, 1979. doi: 10.1088/0305-4470/12/5/007.
  3. A quantum-mechanical heat engine operating in finite time. J. Chem. Phys, 96(4):3054–3067, 02 1992. ISSN 0021-9606. doi: 10.1063/1.461951. URL https://doi.org/10.1063/1.461951.
  4. Quantum heat engines and refrigerators: Continuous devices. Annu. Rev. Phys. Chem., 65:365–393, 2014. doi: 10.1146/annurev-physchem-040513-103724. URL https://doi.org/10.1146/annurev-physchem-040513-103724.
  5. Thermodynamic Principles and Implementations of Quantum Machines, pages 37–66. Springer International Publishing, Cham, 2018. ISBN 978-3-319-99046-0. doi: 10.1007/978-3-319-99046-0_2. URL https://doi.org/10.1007/978-3-319-99046-0_2.
  6. Quantum heat engine using electromagnetically induced transparency. Phys. Rev. Lett., 119:050602, Aug 2017. doi: 10.1103/PhysRevLett.119.050602. URL https://link.aps.org/doi/10.1103/PhysRevLett.119.050602.
  7. A thermoelectric heat engine with ultracold atoms. Science, 342(6159):713–715, 2013. doi: 10.1126/science.1242308. URL https://www.science.org/doi/abs/10.1126/science.1242308.
  8. A single-atom heat engine. Science, 352(6283):325–329, 2016. doi: 10.1126/science.aad6320. URL https://www.science.org/doi/abs/10.1126/science.aad6320.
  9. Spin heat engine coupled to a harmonic-oscillator flywheel. Phys. Rev. Lett., 123:080602, Aug 2019. doi: 10.1103/PhysRevLett.123.080602. URL https://link.aps.org/doi/10.1103/PhysRevLett.123.080602.
  10. Three-terminal energy harvester with coupled quantum dots. Nat. Nanotechnol., 10(10):854–858, 2015. doi: 10.1038/nnano.2015.176.
  11. Experimental demonstration of quantum effects in the operation of microscopic heat engines. Phys. Rev. Lett., 122:110601, Mar 2019. doi: 10.1103/PhysRevLett.122.110601. URL https://link.aps.org/doi/10.1103/PhysRevLett.122.110601.
  12. Lars Onsager. Theories of concentrated electrolytes. Chem. Rev., 13(1):73–89, 1933. doi: 10.1021/cr60044a006.
  13. Chris Jarzynski. Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech., 2004(09):P09005, 2004. doi: 10.1088/1742-5468/2004/09/P09005.
  14. Open quantum system dynamics and the mean force gibbs state. AVS Quantum Sci., 4(1), 03 2022. ISSN 2639-0213. doi: 10.1116/5.0073853.
  15. Equilibrium states of open quantum systems in the strong coupling regime. Phys. Rev. E, 86:061132, Dec 2012. doi: 10.1103/PhysRevE.86.061132. URL https://link.aps.org/doi/10.1103/PhysRevE.86.061132.
  16. Quantum-classical correspondence in spin-boson equilibrium states at arbitrary coupling. eprint arXiv:2204.10874, 2022. doi: https://doi.org/10.48550/arXiv.2204.10874.
  17. Weak and ultrastrong coupling limits of the quantum mean force Gibbs state. Phys. Rev. Lett., 127:250601, 2021. doi: 10.1103/PhysRevLett.127.250601.
  18. Hamiltonian of mean force in the weak-coupling and high-temperature approximations and refined quantum master equations. Int. J. Mod. Phys. A, 37(20n21):2243021, 2022. doi: 10.1142/s0217751x22430217.
  19. Efficient energy transfer in light-harvesting systems, i: optimal temperature, reorganization energy and spatial–temporal correlations. New J. Phys., 12(10):105012, 2010. doi: 10.1088/1367-2630/12/10/105012.
  20. An efficient method to calculate excitation energy transfer in light-harvesting systems: application to the fenna–matthews–olson complex. New J. Phys., 13(11):113034, 2011. doi: 10.1088/1367-2630/13/11/113034.
  21. Ulrich Weiss. Quantum Dissipative Systems. WORLD SCIENTIFIC, 3rd edition, 2008. doi: 10.1142/6738.
  22. Quantum tunnelling in a dissipative system. Ann. Phys., 149(2):374–456, 1983. doi: 10.1016/0003-4916(83)90202-6.
  23. Pushing the limits of the reaction-coordinate mapping. J. Chem. Phys., 151(9):094107, 2019. doi: 10.1063/1.5114690.
  24. Alfred G Redfield. On the theory of relaxation processes. IBM J. Res. Dev., 1(1):19–31, 1957. doi: 10.1147/rd.11.0019.
  25. AG Redfield. The theory of relaxation processes. Adv. Magn. Opt. Reson., 1:1–32, 1965. doi: 10.1016/B978-1-4832-3114-3.50007-6.
  26. On the adequacy of the redfield equation and related approaches to the study of quantum dynamics in electronic energy transfer. J. Chem. Phys., 130(23):234110, 2009. doi: 10.1063/1.3155214.
  27. JD Cresser and C Facer. Coarse-graining in the derivation of markovian master equations and its significance in quantum thermodynamics. eprint arXiv:1710.09939, 2017. doi: https://doi.org/10.48550/arXiv.1710.09939.
  28. Environmentally induced entanglement–anomalous behavior in the adiabatic regime. Quantum, 4:347, 2020a. doi: 10.22331/q-2020-10-22-347.
  29. Generalized gibbs state with modified redfield solution: Exact agreement up to second order. The Journal of chemical physics, 136(19):194110, 2012.
  30. Renormalization in the theory of open quantum systems via the self-consistency condition. eprint arxiv:2112.11962, 2021. doi: https://doi.org/10.48550/arXiv.2112.11962.
  31. Anton Trushechkin. Unified gorini-kossakowski-lindblad-sudarshan quantum master equation beyond the secular approximation. Physical Review A, 103(6):062226, 2021. doi: 10.1103/PhysRevA.103.062226.
  32. E. Brian Davies. Markovian master equations. Commun. Math. Phys., 39(2):91–110, 1974. doi: 10.1007/BF01608389.
  33. Completely positive dynamical semigroups of n-level systems. J. Math. Phys., 17(5):821–825, 1976. doi: 10.1063/1.522979.
  34. Göran Lindblad. On the generators of quantum dynamical semigroups. Commun. Math. Phys., 48:119, 1976. doi: 10.1007/BF01608499.
  35. The theory of open quantum systems. Oxford University Press, 2002. doi: 10.1093/acprof:oso/9780199213900.001.0001.
  36. Local versus global master equation with common and separate baths: superiority of the global approach in partial secular approximation. New J. Phys., 21(11):113045, 2019. doi: 10.1088/1367-2630/ab54ac.
  37. Harry Bateman. Tables of integral transforms, volume 1. McGraw-Hill book company, 1954. ISBN 9780070195493.
  38. Open quantum systems, effective hamiltonians, and device characterization. Phys. Rev. B, 96:134520, Oct 2017. doi: 10.1103/PhysRevB.96.134520.
  39. Gaussian States in Quantum Information. Napoli Series on physics and Astrophysics. Bibliopolis, 2005. ISBN 88-7088-483-X. doi: 10.48550/arXiv.quant-ph/0503237.
  40. Open system dynamics from thermodynamic compatibility. Phys. Rev. Res., 3:023006, Apr 2021. doi: 10.1103/PhysRevResearch.3.023006. URL https://link.aps.org/doi/10.1103/PhysRevResearch.3.023006.
  41. Slippage of initial conditions for the redfield master equation. J. Chem. Phys., 111(13):5668–5675, 1999. doi: 10.1063/1.479867.
  42. Accuracy assessment of perturbative master equations: Embracing nonpositivity. Phys. Rev. A, 101:012103, Jan 2020b. doi: 10.1103/PhysRevA.101.012103. URL https://link.aps.org/doi/10.1103/PhysRevA.101.012103.
  43. Reduced density matrix for nonequilibrium steady states: A modified redfield solution approach. Physical Review E, 88(5):052127, 2013. doi: 10.1103/PhysRevE.88.052127.
  44. Towards reconciliation of completely positive open system dynamics with the equilibration postulate. eprint arXiv:2204.00643, 2022. doi: https://doi.org/10.48550/arXiv.2204.00643.
  45. Canonically consistent quantum master equation. Phys. Rev. Lett., 129:200403, Nov 2022. doi: 10.1103/PhysRevLett.129.200403. URL https://link.aps.org/doi/10.1103/PhysRevLett.129.200403.
  46. Howard Carmichael. An open systems approach to quantum optics: lectures presented at the Université Libre de Bruxelles, October 28 to November 4, 1991, volume 18. Springer Science & Business Media, 2009. doi: 10.1007/978-3-540-47620-7.
  47. Quantum Brownian motion revisited: extensions and applications. Springer, 2019. doi: 10.1007/978-3-030-16804-9.
  48. Dynamics and thermodynamics of linear quantum open systems. Phys. Rev. Lett., 110:130406, Mar 2013. doi: 10.1103/PhysRevLett.110.130406.
  49. Analytic solution for heat flow through a general harmonic network. Phys. Rev. E, 90:042128, 2014. doi: 10.1103/PhysRevE.90.042128.
  50. Horia Scutaru. Fidelity for displaced squeezed thermal states and the oscillator semigroup. J. Phys. A Math. Gen., 31(15):3659–3663, 1998. doi: 10.1088/0305-4470/31/15/025.
  51. Numerical evaluation and robustness of the quantum mean-force gibbs state. Phys. Rev. A, 106:012204, Jul 2022. doi: 10.1103/PhysRevA.106.012204. URL https://link.aps.org/doi/10.1103/PhysRevA.106.012204.
Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 8 likes.

Upgrade to Pro to view all of the tweets about this paper: