The first Szegő limit theorem on multi-dimensional torus (2305.07860v3)
Abstract: In this paper, we consider the first Szeg\H{o} limit theorems on $d$-torus $\mathbb{T}d$ for $1\leq d\leq +\infty$. It is shown that for any F{\o}lner sequence ${\sigma_N}$ of $\mathbb{Z}d$ and $\varphi\in L1_+(\mathbb{T}d)$, it holds that $$ \lim_{N\rightarrow \infty}\left(\det T_{\sigma_N}\varphi\right){\frac{1}{|\sigma_N|}}=\exp\left(\int_{\mathbb{T}d} \log\varphi~dm_{d}\right). $$ In the case $d=+\infty$, we are associated with multiplicative Toeplitz matrix $T \varphi={\widehat{\varphi}(j/i)}{i,j\in\mathbb{N}}$ and the most concerned non-F{\o}lner truncation, that is, $T_N \varphi={\widehat{\varphi}(j/i)}{1\leq i,j\leq N}$, where $\sigma_N={1,\dots,N}$. It is shown that for each $\varphi\in L\infty_{\mathbb{R}}(\mathbb{T{\infty}})$ and $f\in C[\text{ess-inf} ~\varphi,~\text{ess-sup}~\varphi]$, the limit $\lim_{N\rightarrow \infty} \frac{1}{N}\mathrm{Tr} f \big(T_N \varphi\big)$ exsits. Moreover, it is proven that the limit $\lim_{N\rightarrow \infty}\left(\det T_N \varphi\right){\frac{1}{N}}$ exists for any $\varphi\in L1_+(\mathbb{T}\infty)$ with strictly positive essential infimum. These results are directly related to two problems posed by Nikolski and Pushnitski.