Papers
Topics
Authors
Recent
2000 character limit reached

Szego limit theorem on the lattice

Published 21 Feb 2011 in math-ph and math.MP | (1102.4131v2)

Abstract: In this paper, we prove a Szeg\"{o} type limit theorem on $\ell2(\ZZd)$. We consider operators of the form $H=\Delta+V$, $V$ multiplication by a positive sequence ${V(n), n \in \ZZd}$ with $V(n) \rightarrow \infty, |n| \rightarrow \infty $ on $\ell2(\ZZd)$ and $\pi_{\lambda}$ the orthogonal projection of $\ell2(\mathbb{Z}d)$ on to the space of eigenfunctions of $H$ with eigenvalues $\leq \lambda$. We take $B$ to be a pseudo difference operator of order zero with symbol $b(x,n), (x,n) \in \TTd\times \ZZd$ and show that for nice functions $f$ $$ \lim_{\lambda \rightarrow \infty} Tr(f(\pi_\lambda B\pi_\lambda))/Tr(\pi_\lambda) = \lim_{\lambda \rightarrow \infty} \frac{1}{(2\pi)d} \frac{\sum_{V(n) \leq \lambda} \int_{\TTd} f(b(x,n)) ~ dx}{\sum_{V(n)\leq\lambda} 1}. $$

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.