2000 character limit reached
A Menger-type theorem for two induced paths (2305.04721v5)
Published 8 May 2023 in math.CO and cs.DM
Abstract: We give an approximate Menger-type theorem for when a graph $G$ contains two $X-Y$ paths $P_1$ and $P_2$ such that $P_1 \cup P_2$ is an induced subgraph of $G$. More generally, we prove that there exists a function $f(d) \in O(d)$, such that for every graph $G$ and $X,Y \subseteq V(G)$, either there exist two $X-Y$ paths $P_1$ and $P_2$ such that the distance between $P_1$ and $P_2$ is at least $d$, or there exists $v \in V(G)$ such that the ball of radius $f(d)$ centered at $v$ intersects every $X-Y$ path.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.