Papers
Topics
Authors
Recent
2000 character limit reached

A Menger-type theorem for two induced paths (2305.04721v5)

Published 8 May 2023 in math.CO and cs.DM

Abstract: We give an approximate Menger-type theorem for when a graph $G$ contains two $X-Y$ paths $P_1$ and $P_2$ such that $P_1 \cup P_2$ is an induced subgraph of $G$. More generally, we prove that there exists a function $f(d) \in O(d)$, such that for every graph $G$ and $X,Y \subseteq V(G)$, either there exist two $X-Y$ paths $P_1$ and $P_2$ such that the distance between $P_1$ and $P_2$ is at least $d$, or there exists $v \in V(G)$ such that the ball of radius $f(d)$ centered at $v$ intersects every $X-Y$ path.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.