Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Asymptotic predictions on the velocity gradient statistics in low-Reynolds number random flows: Onset of skewness, intermittency and alignments (2305.03454v1)

Published 5 May 2023 in physics.flu-dyn

Abstract: Stirring a fluid through a Gaussian forcing at a vanishingly small Reynolds number produces a Gaussian random field, while flows at higher Reynolds numbers exhibit non-Gaussianity, cascades, anomalous scaling and preferential alignments. Recent works (Yakhot and Donzis, Phys. Rev. Lett., vol. 119, 2017, pp. 044501; Gotoh and Yang, Philos. Trans. Royal Soc. A, vol. 380, 2022, pp. 20210097) investigated the onset of these turbulent haLLMarks in low-Reynolds number flows by focusing on the scaling of the velocity increments. They showed that the scalings in random flows at low-Reynolds and in high-Reynolds number turbulence are surprisingly similar. In this work, we address the onset of turbulent signatures in low-Reynolds number flows from the viewpoint of the velocity gradient dynamics, giving insights into its rich statistical geometry. We combine a perturbation theory of the full Navier-Stokes equations with velocity gradient modeling. This procedure results in a stochastic model for the velocity gradient in which the model coefficients follow directly from the Navier-Stokes equations and statistical homogeneity constraints. The Fokker-Planck equation associated with our stochastic model admits an analytic solution which shows the onset of turbulent haLLMarks at low Reynolds numbers: skewness, intermittency and preferential alignments arise in the velocity gradient statistics as the Reynolds number increases. The model predictions are in excellent agreement with direct numerical simulations of low-Reynolds number flows.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.