Models of fractional viscous stresses for incompressible materials (2305.01934v4)
Abstract: We present and review several models of fractional viscous stresses from the literature, which generalise classical viscosity theories to fractional orders by replacing total strain derivatives in time with fractional time derivatives. We also briefly introduce Prony-type approximations of these theories. Here we investigate the issues of material frame-indifference and thermodynamic consistency for these models and find that on these bases, some are physically unacceptable. Next we study elementary shearing and tensile motions, observing that some models are more convenient to use than others for the analysis of creep and relaxation. Finally, we compute the incremental stresses due to small-amplitude wave propagation in a deformed material, with a view to establish acousto-elastic formulas for prospective experimental calibrations.
- D. Matignon. An introduction to fractional calculus. In P. Abry, P. Gonçalves, and J. Lévy Véhel, editors, Scaling, Fractals and Wavelets, chapter 7, pages 237–277. John Wiley & Sons, Ltd, Hoboken, NJ, 2009. doi:10.1002/9780470611562.ch7.
- I. Podlubny. Fractional Differential Equations. Academic Press, San Diego, CA, 1999.
- V. E. Tarasov, editor. Handbook of Fractional Calculus with Applications. Volume 4 Applications in Physics, Part A. De Gruyter, Berlin, Boston, 2019. doi:10.1515/9783110571707.
- F. Mainardi. Fractional Calculus and Waves in Linear Viscoelasticity. World Scientific, Singapore, 2010. doi:10.1142/p614.
- Fractional Calculus With Applications in Mechanics: Wave Propagation, Impact and Variational Principles. ISTE Ltd, London, UK, 2014. doi:10.1002/9781118909065.
- Fractional viscoelastic models for power-law materials. Soft Matter, 16(26):6002–6020, 2020. doi:10.1039/D0SM00354A.
- R. Brenner. Realizable effective fractional viscoelasticity in heterogeneous materials. Mech. Res. Commun., 97:22–25, 2019. doi:10.1016/j.mechrescom.2019.02.006.
- J. M. Carcione. Wave Fields in Real Media. Elsevier Science, Amsterdam, The Netherlands, 3 edition, 2015. doi:10.1016/C2013-0-18893-9.
- A. Freed and K. Diethelm. Caputo derivatives in viscoelasticity: a non-linear finite-deformation theory for tissue. Fract. Calc. Appl. Anal., 10(3):219–248, 2007.
- Continuation of periodic solutions for systems with fractional derivatives. Nonlinear Dyn., 95(1):479–493, 2019. doi:10.1007/s11071-018-4577-3.
- Anomalous stability behavior of a properly invariant constitutive equation which generalises fractional derivative models. Int. J. Eng. Sci., 37(3):315–329, 1999. doi:10.1016/S0020-7225(98)00080-9.
- A. D. Drozdov. Fractional differential models in finite viscoelasticity. Acta Mech., 124(1):155–180, 1997. doi:10.1007/BF01213023.
- P. Haupt and A. Lion. On finite linear viscoelasticity of incompressible isotropic materials. Acta Mech., 159(1):87–124, 2002. doi:10.1007/BF01171450.
- Fractional-order nonlinear hereditariness of tendons and ligaments of the human knee. Phil. Trans. R. Soc. A, 378(2172):20190294, 2020. doi:10.1098/rsta.2019.0294.
- Nonlinear viscoelastic constitutive model for bovine liver tissue. Biomech. Model. Mechanobiol., 19(5):1641–1662, 2020. doi:10.1007/s10237-020-01297-5.
- G. A. Holzapfel. Nonlinear Solid Mechanics: A Continuum Approach for Engineering. John Wiley & Sons Ltd., Chichester, 2000.
- Proper formulation of viscous dissipation for nonlinear waves in solids. J. Acoust. Soc. Am., 133(3):1255–1259, 2013. doi:10.1121/1.4776178.
- H. Berjamin. On the accuracy of one-way approximate models for nonlinear waves in soft solids. J. Acoust. Soc. Am., 153(3):1924–1932, 2023. doi:10.1121/10.0017681.
- A. D. Freed and K. Diethelm. Fractional calculus in biomechanics: a 3D viscoelastic model using regularized fractional derivative kernels with application to the human calcaneal fat pad. Biomechan. Model. Mechanobiol., 5(4):203–215, 2006. doi:10.1007/s10237-005-0011-0.
- L.-J. Shen. Fractional derivative models for viscoelastic materials at finite deformations. Int. J. Solids Struct., 190:226–237, 2020. doi:10.1016/j.ijsolstr.2019.10.025.
- N. Sugimoto. ‘Generalized’ Burgers equations and fractional calculus. In A. Jeffrey, editor, Nonlinear Wave Motion, pages 162–179. Longman Group UK Ltd., Harlow, UK, 1989.
- A. Kaye. Non-Newtonian flow in incompressible fluids. College of Aeronautics (CoA), Note 134, Cranfield, UK, 1962. URL http://dspace.lib.cranfield.ac.uk/handle/1826/12105.
- A study of stress relaxation with finite strain. Trans. Soc. Rheol., 7(1):391–410, 1963. doi:10.1122/1.548963.
- B. D. Coleman and W. Noll. Foundations of linear viscoelasticity. Rev. Mod. Phys., 33(2):239–249, 1961. doi:10.1103/RevModPhys.33.239.
- On a new interpretation of the classical Maxwell model. Mech. Res. Commun., 34(7-8):509–514, 2007a. doi:10.1016/j.mechrescom.2007.07.001.
- An efficient and accurate method for modeling nonlinear fractional viscoelastic biomaterials. Comput. Meth. Appl. Mech. Eng., 362:112834, 2020. doi:10.1016/j.cma.2020.112834.
- Incremental dynamics of prestressed viscoelastic solids and its applications in shear wave elastography. Available at SSRN.
- A fractional finite strain viscoelastic model of dielectric elastomer. Appl. Math. Model., 100:564–579, 2021. doi:10.1016/j.apm.2021.08.023.
- A three-dimensional fractional visco-hyperelastic model for soft materials. J. Mech. Behav. Biomed. Mater., 137:105564, 2023. doi:10.1016/j.jmbbm.2022.105564.
- Guided elastic waves in a highly-stretched soft plate. Extreme Mech. Lett., 61:102018, 2023. doi:10.1016/j.eml.2023.102018.
- Propagation and attenuation of Lamb waves in functionally graded fractional viscoelastic soft plates with a pre-deformation. Compos. Struct., 293:115727, 2022. doi:10.1016/j.compstruct.2022.115727.
- A. Lion. On the thermodynamics of fractional damping elements. Contin. Mech. Thermodyn., 9(2):83–96, 1997. doi:10.1007/s001610050057.
- K. Diethelm. An improvement of a nonclassical numerical method for the computation of fractional derivatives. J. Vib. Acoust., 131(1):014502, 2009. doi:10.1115/1.2981167.
- C. Birk and C. Song. An improved non-classical method for the solution of fractional differential equations. Comput. Mech., 46:721–734, 2010. doi:10.1007/s00466-010-0510-4.
- Highly accurate stability-preserving optimization of the Zener viscoelastic model, with application to wave propagation in the presence of strong attenuation. Geophys J. Int., 205(1):427–439, 2016. doi:10.1093/gji/ggw024.
- H. Berjamin and R. De Pascalis. Acoustoelastic analysis of soft viscoelastic solids with application to pre-stressed phononic crystals. Int. J. Solids Struct., 241:111529, 2022. doi:10.1016/j.ijsolstr.2022.111529.
- Thermodynamics of perfect elastic fluids. J. Res. Natl. Bur. Stand., 68B(3):103–113, 1964.
- The status of the K-BKZ model within the framework of materials with multiple natural configurations. J. Non-Newton. Fluid Mech., 141(2-3):79–84, 2007b. doi:10.1016/j.jnnfm.2006.05.014.
- F. Mainardi and G. Spada. Creep, relaxation and viscosity properties for basic fractional models in rheology. Eur. Phys. J. Spec. Top., 193(1):133–160, 2011. doi:10.1140/epjst/e2011-01387-1.
- E. Pucci and G. Saccomandi. Some remarks about a simple history dependent nonlinear viscoelastic model. Mech. Res. Commun., 68:70–76, 2015. doi:10.1016/j.mechrescom.2015.04.007.
- Viscoelastic dynamics of a soft strip subject to a large deformation. Soft Matter, 2024. doi:10.1039/D3SM01485A.
- Third-and fourth-order constants of incompressible soft solids and the acousto-elastic effect. J. Acoust. Soc. Am., 127(5):2759–2763, 2010. doi:10.1121/1.3372624.
- Small amplitude waves and stability for a pre-stressed viscoelastic solid. Z. angew. Math. Phys., 60(3):511–528, 2009. doi:10.1007/s00033-008-7147-6.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.