Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A method for finding a solution to the nonsmooth differential inclusion of a special structure (2305.01781v1)

Published 2 May 2023 in math.OC

Abstract: The paper explores the differential inclusion of a special form. It is supposed that the support function of the set in the right-hand side of an inclusion may contain the maximum of the finite number of continuously differentiable (in phase coordinates) functions. It is required to find a trajectory that would satisfy the differential inclusion with the boundary conditions prescribed and simultaneously lie on the surface given. Such problems arise while practical modeling of discontinuous systems and in other applied problems. The initial problem is reduced to a variational one. It is proved that the resulting functional to be minimized is superdifferentiable. The necessary minimum conditions in terms of superdifferential are formulated. The superdifferential (or the steepest) descent method in a classical form is then applied in order to find stationary points of this functional. Herewith, the functional is constructed in a such a way that one can verify whether the stationary point constructed is indeed a global minimum point of the problem. The convergence of the method proposed is proved. The method constructed is illustrated by examples.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.