A Study on the Integration of Pipeline and E2E SLU systems for Spoken Semantic Parsing toward STOP Quality Challenge (2305.01620v2)
Abstract: Recently there have been efforts to introduce new benchmark tasks for spoken language understanding (SLU), like semantic parsing. In this paper, we describe our proposed spoken semantic parsing system for the quality track (Track 1) in Spoken Language Understanding Grand Challenge which is part of ICASSP Signal Processing Grand Challenge 2023. We experiment with both end-to-end and pipeline systems for this task. Strong automatic speech recognition (ASR) models like Whisper and pretrained LLMs (LM) like BART are utilized inside our SLU framework to boost performance. We also investigate the output level combination of various models to get an exact match accuracy of 80.8, which won the 1st place at the challenge.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.