Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

The Power of Typed Affine Decision Structures: A Case Study (2304.14888v1)

Published 28 Apr 2023 in cs.LG and cs.NE

Abstract: TADS are a novel, concise white-box representation of neural networks. In this paper, we apply TADS to the problem of neural network verification, using them to generate either proofs or concise error characterizations for desirable neural network properties. In a case study, we consider the robustness of neural networks to adversarial attacks, i.e., small changes to an input that drastically change a neural networks perception, and show that TADS can be used to provide precise diagnostics on how and where robustness errors a occur. We achieve these results by introducing Precondition Projection, a technique that yields a TADS describing network behavior precisely on a given subset of its input space, and combining it with PCA, a traditional, well-understood dimensionality reduction technique. We show that PCA is easily compatible with TADS. All analyses can be implemented in a straightforward fashion using the rich algebraic properties of TADS, demonstrating the utility of the TADS framework for neural network explainability and verification. While TADS do not yet scale as efficiently as state-of-the-art neural network verifiers, we show that, using PCA-based simplifications, they can still scale to mediumsized problems and yield concise explanations for potential errors that can be used for other purposes such as debugging a network or generating new training samples.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube