Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum Cross Subspace Alignment Codes via the $N$-sum Box Abstraction (2304.14676v1)

Published 28 Apr 2023 in cs.IT and math.IT

Abstract: Cross-subspace alignment (CSA) codes are used in various private information retrieval (PIR) schemes (e.g., with secure storage) and in secure distributed batch matrix multiplication (SDBMM). Using a recently developed $N$-sum box abstraction of a quantum multiple-access channel (QMAC), we translate CSA schemes over classical multiple-access channels into efficient quantum CSA schemes over a QMAC, achieving maximal superdense coding gain. Because of the $N$-sum box abstraction, the underlying problem of coding to exploit quantum entanglements for CSA schemes, becomes conceptually equivalent to that of designing a channel matrix for a MIMO MAC subject to given structural constraints imposed by the $N$-sum box abstraction, such that the resulting MIMO MAC is able to implement the functionality of a CSA scheme (encoding/decoding) over-the-air. Applications include Quantum PIR with secure and MDS-coded storage, as well as Quantum SDBMM.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (17)
  1. S. Song and M. Hayashi, “Capacity of quantum private information retrieval with multiple servers,” IEEE Transactions on Information Theory, vol. 67, no. 1, pp. 452–463, 2020.
  2. ——, “Capacity of quantum private information retrieval with colluding servers,” IEEE Transactions on Information Theory, vol. 67, no. 8, pp. 5491–5508, 2021.
  3. M. Allaix, S. Song, L. Holzbaur, T. Pllaha, M. Hayashi, and C. Hollanti, “On the capacity of quantum private information retrieval from MDS-coded and colluding servers,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 3, pp. 885–898, 2022.
  4. B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private information retrieval,” Journal of the ACM, vol. 45, no. 6, pp. 965–981, 1998.
  5. H. Sun and S. A. Jafar, “The capacity of private information retrieval,” IEEE Transactions on Information Theory, vol. 63, no. 7, pp. 4075–4088, 2017.
  6. A. S. Holevo, “Bounds for the quantity of information transmitted by a quantum communication channel,” Problemy Peredachi Informatsii, vol. 9, no. 3, pp. 3–11, 1973.
  7. H. Sun and S. A. Jafar, “The capacity of robust private information retrieval with colluding databases,” IEEE Trans. on Information Theory, vol. 64, no. 4, pp. 2361–2370, 2017.
  8. K. Banawan and S. Ulukus, “The capacity of private information retrieval from coded databases,” IEEE Transactions on Information Theory, vol. 64, no. 3, pp. 1945–1956, 2018.
  9. R. Tajeddine, O. W. Gnilke, D. Karpuk, R. Freij-Hollanti, and C. Hollanti, “Private information retrieval from coded storage systems with colluding, Byzantine, and unresponsive servers,” IEEE Transactions on information theory, vol. 65, no. 6, pp. 3898–3906, 2019.
  10. S. Ulukus, S. Avestimehr, M. Gastpar, S. A. Jafar, R. Tandon, and C. Tian, “Private retrieval, computing, and learning: Recent progress and future challenges,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 3, pp. 729–748, 2022.
  11. Z. Jia, H. Sun, and S. A. Jafar, “Cross subspace alignment and the asymptotic capacity of X𝑋Xitalic_X-secure T𝑇Titalic_T-private information retrieval,” IEEE Trans. on Information Theory, vol. 65, no. 9, pp. 5783–5798, Sep. 2019.
  12. Z. Jia and S. A. Jafar, “X𝑋Xitalic_X-secure T𝑇Titalic_T-private information retrieval from MDS coded storage with Byzantine and unresponsive servers,” IEEE Transactions on Information Theory, vol. 66, no. 12, pp. 7427–7438, 2020.
  13. ——, “On the capacity of secure distributed batch matrix multiplication,” IEEE Transactions on Information Theory, vol. 67, no. 11, pp. 7420–7437, 2021.
  14. Z. Chen, Z. Jia, Z. Wang, and S. A. Jafar, “GCSA codes with noise alignment for secure coded multi-party batch matrix multiplication,” IEEE Journal on Selected Areas in Information Theory, vol. 2, no. 1, pp. 306–316, 2021.
  15. M. Allaix, Y. Lu, Y. Yao, T. Pllaha, C. Hollanti, and S. Jafar, “N𝑁Nitalic_N-sum box: An abstraction for linear computation over many-to-one quantum networks,” CPCC Technical Report, 2023. [Online]. Available: http://escholarship.org/uc/item/44p655jp
  16. A. R. Calderbank and P. W. Shor, “Good quantum error-correcting codes exist,” Physical Review A, vol. 54, no. 2, p. 1098, 1996.
  17. A. Steane, “Multiple-particle interference and quantum error correction,” Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 452, no. 1954, pp. 2551–2577, 1996.
Citations (5)

Summary

We haven't generated a summary for this paper yet.