Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Coding Scheme for Unresponsive and Byzantine Server Resilient Quantum $X$-Secure $T$-Private Information Retrieval (2311.07829v2)

Published 14 Nov 2023 in cs.IT and math.IT

Abstract: Building on recent constructions of Quantum Cross Subspace Alignment (QCSA) codes, this work develops a coding scheme for QEBXSTPIR, i.e., classical private information retrieval with $X$-secure storage and $T$-private queries, over a quantum multiple access channel, that is resilient to any set of up to $E$ erased servers (equivalently known as unresponsive servers, or stragglers) together with any set of up to $B$ Byzantine servers. The scheme is accordingly labeled QEBCSA, with the E' andB' indicating resilience to erased and Byzantine servers respectively. The QEBCSA code structure may be broadly useful for problems such as quantum coded secure distributed computation, where security, straggler resilience, and distributed superdense coding gains are simultaneously required. The $X$-security property is further exploited to improve the communication rate when $\epsilon$-error decoding is allowed.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. A. Shamir, “How to share a secret,” Communications of the ACM, vol. 22, no. 11, pp. 612–613, 1979.
  2. R. Cleve, D. Gottesman, and H.-K. Lo, “How to share a quantum secret,” Physical review letters, vol. 83, no. 3, p. 648, 1999.
  3. K. Senthoor and P. K. Sarvepalli, “Theory of communication efficient quantum secret sharing,” IEEE Transactions on Information Theory, vol. 68, no. 5, pp. 3164–3186, 2022.
  4. M. Hayashi and S. Song, “Unified approach to secret sharing and symmetric private information retrieval with colluding servers in quantum systems,” IEEE Transactions on Information Theory, 2023.
  5. B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private information retrieval,” Journal of the ACM, vol. 45, no. 6, pp. 965–981, 1998.
  6. S. Song and M. Hayashi, “Capacity of quantum private information retrieval with colluding servers,” IEEE Transactions on Information Theory, vol. 67, no. 8, pp. 5491–5508, 2021.
  7. M. Allaix, S. Song, L. Holzbaur, T. Pllaha, M. Hayashi, and C. Hollanti, “On the capacity of quantum private information retrieval from MDS-coded and colluding servers,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 3, pp. 885–898, 2022.
  8. Y. Lu and S. A. Jafar, “Quantum cross subspace alignment codes via the n𝑛nitalic_n-sum box abstraction,” arXiv preprint arXiv:2304.14676, 2023.
  9. A. Aytekin, M. Nomeir, S. Vithana, and S. Ulukus, “Quantum symmetric private information retrieval with secure storage and eavesdroppers,” arXiv preprint arXiv:2308.10883, 2023.
  10. Y. Lu, Y. Yao, and S. A. Jafar, “On the capacity of secure K𝐾Kitalic_K-user product computation over a quantum MAC,” IEEE Communications Letters, vol. 27, no. 10, pp. 2598–2602, 2023.
  11. M. Nomeir, A. Aytekin, and S. Ulukus, “Quantum x𝑥xitalic_x-secure b𝑏bitalic_b-byzantine t𝑡titalic_t-colluding private information retrieval,” arXiv preprint arXiv:2401.17252, 2024.
  12. S. Song and M. Hayashi, “Secure quantum network code without classical communication,” IEEE Transactions on Information Theory, vol. 66, no. 2, pp. 1178–1192, 2019.
  13. Y. Yao and S. A. Jafar, “The capacity of classical summation over a quantum mac with arbitrarily distributed inputs and entanglements,” arXiv preprint arXiv:2305.03122, 2023.
  14. ——, “Communication efficiency of summation over a quantum erasure mac with replicated inputs,” arXiv preprint arXiv:2311.08386, 2023.
  15. A. Aytekin, M. Nomeir, and S. Ulukus, “Quantum private membership aggregation,” arXiv preprint arXiv:2401.16390, 2024.
  16. Z. Jia and S. A. Jafar, “X𝑋Xitalic_X-secure T𝑇Titalic_T-private information retrieval from MDS coded storage with Byzantine and unresponsive servers,” IEEE Transactions on Information Theory, vol. 66, no. 12, pp. 7427–7438, 2020.
  17. Q. Yu, S. Li, N. Raviv, S. M. M. Kalan, M. Soltanolkotabi, and S. A. Avestimehr, “Lagrange coded computing: Optimal design for resiliency, security, and privacy,” in The 22nd International Conference on Artificial Intelligence and Statistics.   PMLR, 2019, pp. 1215–1225.
  18. A. R. Calderbank and P. W. Shor, “Good quantum error-correcting codes exist,” Physical Review A, vol. 54, no. 2, p. 1098, 1996.
  19. A. Steane, “Multiple-particle interference and quantum error correction,” Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 452, no. 1954, pp. 2551–2577, 1996.
  20. M. Allaix, Y. Lu, Y. Yao, T. Pllaha, C. Hollanti, and S. Jafar, “N𝑁Nitalic_N-sum box: An abstraction for linear computation over many-to-one quantum networks,” arXiv preprint arXiv:2304.07561, 2023.
  21. Z. Jia, H. Sun, and S. A. Jafar, “Cross subspace alignment and the asymptotic capacity of X𝑋Xitalic_X-secure T𝑇Titalic_T-private information retrieval,” IEEE Trans. on Information Theory, vol. 65, no. 9, pp. 5783–5798, Sep. 2019.
  22. S. Ulukus, S. Avestimehr, M. Gastpar, S. A. Jafar, R. Tandon, and C. Tian, “Private retrieval, computing, and learning: Recent progress and future challenges,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 3, pp. 729–748, 2022.
  23. Z. Jia and S. A. Jafar, “Cross subspace alignment codes for coded distributed batch computation,” IEEE Transactions on Information Theory, vol. 67, no. 5, pp. 2821–2846, 2021.
  24. A. S. Holevo, “Bounds for the quantity of information transmitted by a quantum communication channel,” Problemy Peredachi Informatsii, vol. 9, no. 3, pp. 3–11, 1973.
  25. O. Kosut and J. Kliewer, “Authentication capacity of adversarial channels,” in 2018 IEEE Information Theory Workshop (ITW).   IEEE, 2018, pp. 1–5.
  26. S. Pawar, S. El Rouayheb, and K. Ramchandran, “Securing dynamic distributed storage systems against eavesdropping and adversarial attacks,” IEEE Transactions on Information Theory, vol. 57, no. 10, pp. 6734–6753, 2011.
  27. R. Bitar and S. Jaggi, “Communication efficient secret sharing in the presence of malicious adversary,” in 2020 IEEE International Symposium on Information Theory (ISIT).   IEEE, 2020, pp. 548–553.
  28. A. Kawachi and H. Nishimura, “Communication complexity of private simultaneous quantum messages protocols,” in Proceedings of Conference on Information Theoretic Cryptography (ITC 2021), ser. Leibniz International Proceedings in Informatics (LIPIcs), vol. 199, 2021, pp. 20:1–20:19.
  29. A. Ketkar, A. Klappenecker, S. Kumar, and P. K. Sarvepalli, “Nonbinary stabilizer codes over finite fields,” IEEE transactions on information theory, vol. 52, no. 11, pp. 4892–4914, 2006.
  30. B. M. Terhal, “Quantum error correction for quantum memories,” Rev. Mod. Phys., vol. 87, pp. 307–346, Apr 2015. [Online]. Available: https://link.aps.org/doi/10.1103/RevModPhys.87.307

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com