Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

$N$-Sum Box: An Abstraction for Linear Computation over Many-to-one Quantum Networks (2304.07561v2)

Published 15 Apr 2023 in cs.IT, math.IT, and quant-ph

Abstract: Linear computations over quantum many-to-one communication networks offer opportunities for communication cost improvements through schemes that exploit quantum entanglement among transmitters to achieve superdense coding gains, combined with classical techniques such as interference alignment. The problem becomes much more broadly accessible if suitable abstractions can be found for the underlying quantum functionality via classical black box models. This work formalizes such an abstraction in the form of an "$N$-sum box", a black box generalization of a two-sum protocol of Song \emph{et al.} with recent applications to $N$-server private information retrieval. The $N$-sum box has a communication cost of $N$ qudits and classical output of a vector of $N$ $q$-ary digits linearly dependent (via an $N \times 2N$ transfer matrix) on $2N$ classical inputs distributed among $N$ transmitters. We characterize which transfer matrices are feasible by our construction, both with and without the possibility of additional locally invertible classical operations at the transmitters and receivers. Furthermore, we provide a sample application to Cross-Subspace Alignment (CSA) schemes to obtain efficient instances of Quantum Private Information Retrieval (QPIR) and Quantum Secure Distributed Batch Matrix Multiplication (QSDBMM). We first describe $N$-sum boxes based on maximal stabilizers and we then consider non-maximal-stabilizer-based constructions to obtain an instance of Quantum Symmetric Private Information Retrieval.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. M. Allaix, Y. Lu, Y. Yao, T. Pllaha, C. Hollanti, and S. Jafar, “N𝑁Nitalic_N-sum box: An abstraction for linear computation over many-to-one quantum networks,” arXiv preprint arXiv:2304.07561, 2023.
  2. Y. Lu and S. A. Jafar, “Quantum cross subspace alignment codes via the N𝑁Nitalic_N-sum box abstraction,” arXiv preprint arXiv:2304.14676, 2023.
  3. B. Nazer and M. Gastpar, “Computation over multiple-access channels,” IEEE Transactions on information theory, vol. 53, no. 10, pp. 3498–3516, 2007.
  4. J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113, 2008.
  5. Z. Jia and S. A. Jafar, “On the capacity of secure distributed batch matrix multiplication,” IEEE Transactions on Information Theory, vol. 67, no. 11, pp. 7420–7437, 2021.
  6. R. Ahlswede, N. Cai, S.-Y. Li, and R. W. Yeung, “Network information flow,” IEEE Transactions on information theory, vol. 46, no. 4, pp. 1204–1216, 2000.
  7. M. Belzner and H. Haunstein, “Network coding in passive optical networks,” in 2009 35th European Conference on Optical Communication.   IEEE, 2009, pp. 1–2.
  8. M. Hayashi, K. Iwama, H. Nishimura, R. Raymond, and S. Yamashita, “Quantum network coding,” in STACS 2007: 24th Annual Symposium on Theoretical Aspects of Computer Science, Aachen, Germany, February 22-24, 2007. Proceedings 24.   Springer, 2007, pp. 610–621.
  9. A. S. Cacciapuoti, M. Caleffi, R. Van Meter, and L. Hanzo, “When entanglement meets classical communications: Quantum teleportation for the quantum internet,” IEEE Transactions on Communications, vol. 68, no. 6, pp. 3808–3833, 2020.
  10. A. S. Cacciapuoti, M. Caleffi, F. Tafuri, F. S. Cataliotti, S. Gherardini, and G. Bianchi, “Quantum internet: Networking challenges in distributed quantum computing,” IEEE Network, vol. 34, no. 1, pp. 137–143, 2020.
  11. M. Caleffi, M. Amoretti, D. Ferrari, D. Cuomo, J. Illiano, A. Manzalini, and A. S. Cacciapuoti, “Distributed quantum computing: a survey,” arXiv preprint arXiv:2212.10609, 2022.
  12. C. H. Bennett and S. J. Wiesner, “Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states,” Physical review letters, vol. 69, no. 20, p. 2881, 1992.
  13. R. F. Werner, “All teleportation and dense coding schemes,” Journal of Physics A: Mathematical and General, vol. 34, no. 35, p. 7081, 2001.
  14. X. S. Liu, G. L. Long, D. M. Tong, and F. Li, “General scheme for superdense coding between multiparties,” Physical Review A, vol. 65, no. 2, p. 022304, 2002.
  15. V. N. Gorbachev, A. I. Trubilko, A. A. Rodichkina, and A. I. Zhiliba, “Teleportation and dense coding via a multiparticle quantum channel of the GHZ-class.” Quantum Inf. Comput., vol. 2, no. 5, pp. 367–378, 2002.
  16. S. Song and M. Hayashi, “Capacity of quantum private information retrieval with multiple servers,” IEEE Transactions on Information Theory, vol. 67, no. 1, pp. 452–463, 2020.
  17. ——, “Capacity of quantum private information retrieval with collusion of all but one of servers,” in 2019 IEEE Information Theory Workshop (ITW).   IEEE, 2019, pp. 1–5.
  18. ——, “Capacity of quantum private information retrieval with colluding servers,” IEEE Transactions on Information Theory, vol. 67, no. 8, pp. 5491–5508, 2021.
  19. M. Allaix, L. Holzbaur, T. Pllaha, and C. Hollanti, “Quantum private information retrieval from coded and colluding servers,” IEEE Journal on Selected Areas in Information Theory, vol. 1, no. 2, pp. 599–610, 2020.
  20. ——, “High-rate quantum private information retrieval with weakly self-dual star product codes,” in 2021 IEEE International Symposium on Information Theory (ISIT), 2021, pp. 1046–1051.
  21. M. Allaix, S. Song, L. Holzbaur, T. Pllaha, M. Hayashi, and C. Hollanti, “On the capacity of quantum private information retrieval from MDS-coded and colluding servers,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 3, pp. 885–898, 2022.
  22. S. Song and M. Hayashi, “Quantum private information retrieval for quantum messages,” in 2021 IEEE International Symposium on Information Theory (ISIT), 2021, pp. 1052–1057.
  23. M. Hayashi and Á. Vázquez-Castro, “Computation-aided classical-quantum multiple access to boost network communication speeds,” Physical Review Applied, vol. 16, no. 5, p. 054021, 2021.
  24. M. A. Sohail, T. A. Atif, A. Padakandla, and S. S. Pradhan, “Computing sum of sources over a classical-quantum mac,” IEEE Transactions on Information Theory, vol. 68, no. 12, pp. 7913–7934, 2022.
  25. M. A. Sohail, T. A. Atif, and S. S. Pradhan, “Unified approach for computing sum of sources over cq-mac,” in 2022 IEEE International Symposium on Information Theory (ISIT).   IEEE, 2022, pp. 1868–1873.
  26. M. Hayashi and S. Song, “Unified approach to secret sharing and symmetric private information retrieval with colluding servers in quantum systems,” arXiv preprint arXiv:2205.14622, 2022.
  27. A. S. Holevo, “Bounds for the quantity of information transmitted by a quantum communication channel,” Problemy Peredachi Informatsii, vol. 9, no. 3, pp. 3–11, 1973.
  28. D. Gottesman, “Stabilizer codes and quantum error correction,” 1997, PhD thesis, California Institute of Technology.
  29. A. Ashikhmin and E. Knill, “Nonbinary quantum stabilizer codes,” IEEE Transactions on Information Theory, vol. 47, no. 7, pp. 3065–3072, 2001.
  30. S. K. A. Ketkar, A. Klappenecker and P. Sarvepalli, “Nonbinary stabilizer codes over finite fields,” IEEE Transactions on Information Theory, vol. 52, no. 11, pp. 4892–4914, 2006.
  31. A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane, “Quantum error correction via codes over GF⁢(4)GF4{\rm GF}(4)roman_GF ( 4 ),” IEEE Trans. Inform. Theory, vol. 44, no. 4, pp. 1369–1387, 1998.
  32. Y. Yao and S. A. Jafar, “The capacity of classical summation over a quantum MAC with arbitrarily replicated inputs,” 2023.
  33. R. Freij-Hollanti, O. W. Gnilke, C. Hollanti, and D. A. Karpuk, “Private information retrieval from coded databases with colluding servers,” SIAM Journal on Applied Algebra and Geometry, vol. 1, no. 1, pp. 647–664, 2017.
  34. Z. Jia, H. Sun, and S. A. Jafar, “Cross subspace alignment and the asymptotic capacity of X𝑋Xitalic_X-secure T𝑇Titalic_T-private information retrieval,” IEEE Transactions on Information Theory, vol. 65, no. 9, pp. 5783–5798, Sep. 2019.
  35. Z. Jia and S. A. Jafar, “X𝑋Xitalic_X-secure T𝑇Titalic_T-private information retrieval from MDS coded storage with Byzantine and unresponsive servers,” IEEE Transactions on Information Theory, vol. 66, no. 12, pp. 7427–7438, 2020.
  36. Z. Chen, Z. Jia, Z. Wang, and S. A. Jafar, “GCSA codes with noise alignment for secure coded multi-party batch matrix multiplication,” IEEE Journal on Selected Areas in Information Theory, vol. 2, no. 1, pp. 306–316, 2021.
  37. D. Maslov and M. Roetteler, “Shorter stabilizer circuits via Bruhat decomposition and quantum circuit transformations,” IEEE Transactions on Information Theory, vol. 64, no. 7, pp. 4729–4738, 2018.
  38. T. Pllaha, O. Tirkkonen, and R. Calderbank, “Binary subspace chirps,” IEEE Transactions on Information Theory, vol. 68, no. 12, pp. 7735–7752, 2022.
  39. T. Pllaha, N. Rengaswamy, O. Tirkkonen, and R. Calderbank, “Un-Weyl-ing the Clifford Hierarchy,” Quantum, vol. 4, p. 370, Dec. 2020.
Citations (16)

Summary

We haven't generated a summary for this paper yet.