Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Applied Machine-Learning Models to Identify Spectral Sub-Types of M Dwarfs from Photometric Surveys (2304.14113v1)

Published 27 Apr 2023 in astro-ph.IM, astro-ph.GA, and astro-ph.SR

Abstract: M dwarfs are the most abundant stars in the Solar Neighborhood and they are prime targets for searching for rocky planets in habitable zones. Consequently, a detailed characterization of these stars is in demand. The spectral sub-type is one of the parameters that is used for the characterization and it is traditionally derived from the observed spectra. However, obtaining the spectra of M dwarfs is expensive in terms of observation time and resources due to their intrinsic faintness. We study the performance of four machine-learning (ML) models: K-Nearest Neighbor (KNN), Random Forest (RF), Probabilistic Random Forest (PRF), and Multilayer Perceptron (MLP), in identifying the spectral sub-types of M dwarfs at a grand scale by deploying broadband photometry in the optical and near-infrared. We trained the ML models by using the spectroscopically identified M dwarfs from the Sloan Digital Sky Survey Data Release (SDSS) 7, together with their photometric colors that were derived from the SDSS, Two-Micron All-Sky Survey, and Wide-field Infrared Survey Explorer. We found that the RF, PRF, and MLP give a comparable prediction accuracy, 74%, while the KNN provides slightly lower accuracy, 71%. We also found that these models can predict the spectral sub-type of M dwarfs with ~99% accuracy within +/-1 sub-type. The five most useful features for the prediction are r-z, r-i, r-J, r-H, and g-z, and hence lacking data in all SDSS bands substantially reduces the prediction accuracy. However, we can achieve an accuracy of over 70% when the r and i magnitudes are available. Since the stars in this study are nearby (d~1300 pc for 95% of the stars), the dust extinction can reduce the prediction accuracy by only 3%. Finally, we used our optimized RF models to predict the spectral sub-types of M dwarfs from the Catalog of Cool Dwarf Targets for TESS, and we provide the optimized RF models for public use.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.