Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Evolution from quantum anomalous Hall insulator to heavy-fermion semimetal in magic-angle twisted bilayer graphene (2304.14064v4)

Published 27 Apr 2023 in cond-mat.str-el and cond-mat.mes-hall

Abstract: The ground states of twisted bilayer graphene (TBG) at chiral and flat-band limit with integer fillings are known from exact solutions, while their dynamical and thermodynamical properties are revealed by unbiased quantum Monte Carlo (QMC) simulations. However, to elucidate experimental observations of correlated metallic, insulating and superconducting states and their transitions, investigations on realistic, or non-chiral cases are vital. Here we employ momentum-space QMC method to investigate the evolution of correlated states in magic-angle TBG away from chiral limit at charge neutrality with polarized spin/valley, which approximates to an experimental case with filling factor $\nu=-3$. We find that the ground state evolves from quantum anomalous Hall insulator into an intriguing correlated semimetallic state possessing heavy-fermion features as AA hopping strength reaches experimental values. Such a state resembles the recently proposed heavy-fermion representations with localized electrons residing at AA stacking regions and delocalized electrons itinerating via AB/BA stacking regions. The spectral signatures of the localized and itinerant electrons in the heavy-fermion semimetal phase are revealed, with the connection to experimental results being discussed.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. G. Trambly de Laissardière, D. Mayou, and L. Magaud, Localization of dirac electrons in rotated graphene bilayers, Nano Letters 10, 804 (2010).
  2. G. Trambly de Laissardière, D. Mayou, and L. Magaud, Numerical studies of confined states in rotated bilayers of graphene, Phys. Rev. B 86, 125413 (2012).
  3. R. Bistritzer and A. H. MacDonald, Moiré bands in twisted double-layer graphene, Proceedings of the National Academy of Sciences 108, 12233 (2011).
  4. P. Potasz, M. Xie, and A. H. MacDonald, Exact diagonalization for magic-angle twisted bilayer graphene, Phys. Rev. Lett. 127, 147203 (2021).
  5. P. Wilhelm, T. C. Lang, and A. M. Läuchli, Interplay of fractional chern insulator and charge density wave phases in twisted bilayer graphene, Phys. Rev. B 103, 125406 (2021).
  6. M. Xie and A. H. MacDonald, Nature of the correlated insulator states in twisted bilayer graphene, Phys. Rev. Lett. 124, 097601 (2020).
  7. J. Liu and X. Dai, Theories for the correlated insulating states and quantum anomalous hall effect phenomena in twisted bilayer graphene, Phys. Rev. B 103, 035427 (2021).
  8. K. Hejazi, X. Chen, and L. Balents, Hybrid wannier chern bands in magic angle twisted bilayer graphene and the quantized anomalous hall effect, Phys. Rev. Res. 3, 013242 (2021).
  9. X. Lin and J. Ni, Symmetry breaking in the double moiré superlattices of relaxed twisted bilayer graphene on hexagonal boron nitride, Phys. Rev. B 102, 035441 (2020).
  10. J. Kang and O. Vafek, Non-abelian dirac node braiding and near-degeneracy of correlated phases at odd integer filling in magic-angle twisted bilayer graphene, Phys. Rev. B 102, 035161 (2020).
  11. E. Y. Andrei and A. H. MacDonald, Graphene bilayers with a twist, Nature materials 19, 1265 (2020).
  12. N. N. T. Nam and M. Koshino, Lattice relaxation and energy band modulation in twisted bilayer graphene, Phys. Rev. B 96, 075311 (2017).
  13. D. Xi, Quantum monte carlo simulations in momentum space, Chinese Physics Letters 39, 50101 (2022).
  14. Z.-D. Song and B. A. Bernevig, Magic-angle twisted bilayer graphene as a topological heavy fermion problem, Phys. Rev. Lett. 129, 047601 (2022).
  15. H. Shi and X. Dai, Heavy-fermion representation for twisted bilayer graphene systems, Phys. Rev. B 106, 245129 (2022).
  16. Y.-Z. Chou and S. Das Sarma, Kondo lattice model in magic-angle twisted bilayer graphene, Phys. Rev. Lett. 131, 026501 (2023a).
  17. Y. Chou and S. Das Sarma, Scaling theory of intrinsic kondo and hund’s rule interactions in magic-angle twisted bilayer graphene, arXiv preprint arXiv:2306.03121  (2023b).
  18. J. P. Hong, T. Soejima, and M. P. Zaletel, Detecting symmetry breaking in magic angle graphene using scanning tunneling microscopy, Phys. Rev. Lett. 129, 147001 (2022).
  19. A. W. Sandvik, Stochastic method for analytic continuation of quantum monte carlo data, Phys. Rev. B 57, 10287 (1998).
  20. H. Shao and A. W. Sandvik, Progress on stochastic analytic continuation of quantum monte carlo data, Physics Reports 1003, 1 (2023).
  21. H. B. Nielsen and M. Ninomiya, A no-go theorem for regularizing chiral fermions, Physics Letters B 105, 219 (1981).
  22. Z. Yan and Z. Y. Meng, Relating entanglement spectra and energy spectra via path-integral on replica manifold, arXiv e-prints , arXiv:2112.05886 (2021), arXiv:2112.05886 [cond-mat.str-el] .
Citations (11)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 1 like.