Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Blockchain-based Federated Learning with SMPC Model Verification Against Poisoning Attack for Healthcare Systems (2304.13360v1)

Published 26 Apr 2023 in cs.CR

Abstract: Due to the rising awareness of privacy and security in machine learning applications, federated learning (FL) has received widespread attention and applied to several areas, e.g., intelligence healthcare systems, IoT-based industries, and smart cities. FL enables clients to train a global model collaboratively without accessing their local training data. However, the current FL schemes are vulnerable to adversarial attacks. Its architecture makes detecting and defending against malicious model updates difficult. In addition, most recent studies to detect FL from malicious updates while maintaining the model's privacy have not been sufficiently explored. This paper proposed blockchain-based federated learning with SMPC model verification against poisoning attacks for healthcare systems. First, we check the machine learning model from the FL participants through an encrypted inference process and remove the compromised model. Once the participants' local models have been verified, the models are sent to the blockchain node to be securely aggregated. We conducted several experiments with different medical datasets to evaluate our proposed framework.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Aditya Pribadi Kalapaaking (6 papers)
  2. Ibrahim Khalil (23 papers)
  3. Xun Yi (29 papers)
Citations (32)