Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Black hole hairs in scalar-tensor gravity and the lack thereof (2304.12750v3)

Published 25 Apr 2023 in gr-qc and hep-th

Abstract: Scalar-tensor theories are a natural alternative to general relativity, as they may provide an effective dark energy phenomenology on cosmological scales while passing local tests, but their black hole solutions are still poorly understood. Here, we generalize existing no-hair theorems for spherical black holes and specific theories in the scalar-tensor class. We show that shift symmetry prevents the appearance of scalar hairs in rotating (asymptotically flat, stationary and axisymmetric) black holes for all theories in the Horndeski/beyond Horndeski/DHOST classes, but for those with a coupling between the scalar and the Gauss--Bonnet invariant. Our proof also applies to higher dimensions. We also compute the values of the scalar hair charges if shift symmetry and asymptotic flatness are violated by a time growth of the scalar field at infinity, under suitable regularity conditions at the event horizon.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (106)
  1. M. Fierz, “On the physical interpretation of P.Jordan’s extended theory of gravitation,” Helv. Phys. Acta, vol. 29, pp. 128–134, 1956.
  2. P. Jordan, “The present state of Dirac’s cosmological hypothesis,” Z. Phys., vol. 157, pp. 112–121, 1959.
  3. C. Brans and R. H. Dicke, “Mach’s principle and a relativistic theory of gravitation,” Phys. Rev., vol. 124, pp. 925–935, 1961.
  4. T. Damour and G. Esposito-Farese, “Tensor multiscalar theories of gravitation,” Class. Quant. Grav., vol. 9, pp. 2093–2176, 1992.
  5. T. Damour and G. Esposito-Farese, “Nonperturbative strong field effects in tensor - scalar theories of gravitation,” Phys. Rev. Lett., vol. 70, pp. 2220–2223, 1993.
  6. C. M. Will, Theory and Experiment in Gravitational Physics. Cambridge: Cambridge University Press, 1993.
  7. T. Damour and J. H. Taylor, “Strong field tests of relativistic gravity and binary pulsars,” Phys. Rev., vol. D45, pp. 1840–1868, 1992.
  8. C. M. Will, “The Confrontation between General Relativity and Experiment,” Living Rev. Rel., vol. 17, p. 4, 2014.
  9. P. Astier and R. Pain, “Observational Evidence of the Accelerated Expansion of the Universe,” Comptes Rendus Physique, vol. 13, pp. 521–538, 2012.
  10. S. Perlmutter et al., “Measurements of ΩΩ\Omegaroman_Ω and ΛΛ\Lambdaroman_Λ from 42 high redshift supernovae,” Astrophys. J., vol. 517, pp. 565–586, 1999.
  11. P. A. R. Ade et al., “Planck 2015 results. XIV. Dark energy and modified gravity,” Astron. Astrophys., vol. 594, p. A14, 2016.
  12. N. Aghanim et al., “Planck 2018 results. VI. Cosmological parameters,” Astron. Astrophys., vol. 641, p. A6, 2020. [Erratum: Astron.Astrophys. 652, C4 (2021)].
  13. B. P. Abbott et al., “Observation of Gravitational Waves from a Binary Black Hole Merger,” Phys. Rev. Lett., vol. 116, no. 6, p. 061102, 2016.
  14. A. Nicolis, R. Rattazzi, and E. Trincherini, “The Galileon as a local modification of gravity,” Phys. Rev. D, vol. 79, p. 064036, 2009.
  15. D. Pirtskhalava, L. Santoni, E. Trincherini, and F. Vernizzi, “Weakly Broken Galileon Symmetry,” JCAP, vol. 09, p. 007, 2015.
  16. L. Santoni, E. Trincherini, and L. G. Trombetta, “Behind Horndeski: structurally robust higher derivative EFTs,” JHEP, vol. 08, p. 118, 2018.
  17. G. W. Horndeski, “Second-order scalar-tensor field equations in a four-dimensional space,” Int. J. Theor. Phys., vol. 10, pp. 363–384, 1974.
  18. J. Gleyzes, D. Langlois, F. Piazza, and F. Vernizzi, “Healthy theories beyond Horndeski,” Phys. Rev. Lett., vol. 114, no. 21, p. 211101, 2015.
  19. M. Zumalacárregui and J. García-Bellido, “Transforming gravity: from derivative couplings to matter to second-order scalar-tensor theories beyond the Horndeski Lagrangian,” Phys. Rev. D, vol. 89, p. 064046, 2014.
  20. D. Langlois and K. Noui, “Degenerate higher derivative theories beyond Horndeski: evading the Ostrogradski instability,” JCAP, vol. 02, p. 034, 2016.
  21. D. Langlois and K. Noui, “Hamiltonian analysis of higher derivative scalar-tensor theories,” JCAP, vol. 07, p. 016, 2016.
  22. M. Crisostomi, M. Hull, K. Koyama, and G. Tasinato, “Horndeski: beyond, or not beyond?,” JCAP, vol. 03, p. 038, 2016.
  23. J. Ben Achour, M. Crisostomi, K. Koyama, D. Langlois, K. Noui, and G. Tasinato, “Degenerate higher order scalar-tensor theories beyond Horndeski up to cubic order,” JHEP, vol. 12, p. 100, 2016.
  24. J. Ben Achour, D. Langlois, and K. Noui, “Degenerate higher order scalar-tensor theories beyond Horndeski and disformal transformations,” Phys. Rev. D, vol. 93, no. 12, p. 124005, 2016.
  25. M. Crisostomi, K. Koyama, and G. Tasinato, “Extended Scalar-Tensor Theories of Gravity,” JCAP, vol. 04, p. 044, 2016.
  26. D. Langlois, “Dark energy and modified gravity in degenerate higher-order scalar–tensor (DHOST) theories: A review,” Int. J. Mod. Phys. D, vol. 28, no. 05, p. 1942006, 2019.
  27. J. Noller, L. Santoni, E. Trincherini, and L. G. Trombetta, “Black Hole Ringdown as a Probe for Dark Energy,” Phys. Rev. D, vol. 101, p. 084049, 2020.
  28. B. Abbott et al., “Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A,” Astrophys. J. Lett., vol. 848, no. 2, p. L13, 2017.
  29. P. Creminelli, M. Lewandowski, G. Tambalo, and F. Vernizzi, “Gravitational Wave Decay into Dark Energy,” JCAP, vol. 1812, p. 025, 2018.
  30. P. Creminelli, G. Tambalo, F. Vernizzi, and V. Yingcharoenrat, “Resonant Decay of Gravitational Waves into Dark Energy,” JCAP, vol. 10, p. 072, 2019.
  31. P. Creminelli, G. Tambalo, F. Vernizzi, and V. Yingcharoenrat, “Dark-Energy Instabilities induced by Gravitational Waves,” JCAP, vol. 05, p. 002, 2020.
  32. G. Lara, M. Bezares, M. Crisostomi, and E. Barausse, “Robustness of kinetic screening against matter coupling,” Phys. Rev. D, vol. 107, no. 4, p. 044019, 2023.
  33. E. Barausse, C. Palenzuela, M. Ponce, and L. Lehner, “Neutron-star mergers in scalar-tensor theories of gravity,” Phys. Rev. D, vol. 87, p. 081506, 2013.
  34. C. Palenzuela, E. Barausse, M. Ponce, and L. Lehner, “Dynamical scalarization of neutron stars in scalar-tensor gravity theories,” Phys. Rev. D, vol. 89, no. 4, p. 044024, 2014.
  35. C. Armendariz-Picon, V. F. Mukhanov, and P. J. Steinhardt, “A Dynamical solution to the problem of a small cosmological constant and late time cosmic acceleration,” Phys. Rev. Lett., vol. 85, pp. 4438–4441, 2000.
  36. E. Babichev, C. Deffayet, and R. Ziour, “k-Mouflage gravity,” Int. J. Mod. Phys. D, vol. 18, pp. 2147–2154, 2009.
  37. L. ter Haar, M. Bezares, M. Crisostomi, E. Barausse, and C. Palenzuela, “Dynamics of Screening in Modified Gravity,” Phys. Rev. Lett., vol. 126, p. 091102, 2021.
  38. M. Bezares, L. ter Haar, M. Crisostomi, E. Barausse, and C. Palenzuela, “Kinetic screening in nonlinear stellar oscillations and gravitational collapse,” Phys. Rev. D, vol. 104, no. 4, p. 044022, 2021.
  39. M. Bezares, R. Aguilera-Miret, L. ter Haar, M. Crisostomi, C. Palenzuela, and E. Barausse, “No Evidence of Kinetic Screening in Simulations of Merging Binary Neutron Stars beyond General Relativity,” Phys. Rev. Lett., vol. 128, no. 9, p. 091103, 2022.
  40. R. Abbott et al., “GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run,” arXiv e-prints, 11 2021.
  41. D. M. Eardley, “Observable effects of a scalar gravitational field in a binary pulsar,” Astrophys. J., Lett., v. 196, no. 2, pp. L59-L62, 3 1975.
  42. C. M. Will and H. W. Zaglauer, “Gravitational Radiation, Close Binary Systems, and the Brans-dicke Theory of Gravity,” Astrophys. J., vol. 346, p. 366, 1989.
  43. R. P. Kerr, “Gravitational field of a spinning mass as an example of algebraically special metrics,” Phys. Rev. Lett., vol. 11, pp. 237–238, 1963.
  44. E. T. Newman and A. I. Janis, “Note on the kerr spinning-particle metric,” Journal of Mathematical Physics, vol. 6, no. 6, pp. 915–917, 1965.
  45. B. Carter, “Global structure of the kerr family of gravitational fields,” Phys. Rev., vol. 174, pp. 1559–1571, Oct 1968.
  46. D. C. Robinson, “Uniqueness of the kerr black hole,” Phys. Rev. Lett., vol. 34, pp. 905–906, Apr 1975.
  47. S. W. Hawking, “Black holes in the Brans-Dicke theory of gravitation,” Communications in Mathematical Physics, vol. 25, no. 2, pp. 167 – 171, 1972.
  48. A. Lehé bel, E. Babichev, and C. Charmousis, “A no-hair theorem for stars in horndeski theories,” Journal of Cosmology and Astroparticle Physics, vol. 2017, pp. 037–037, jul 2017.
  49. K. Yagi, L. C. Stein, and N. Yunes, “Challenging the presence of scalar charge and dipolar radiation in binary pulsars,” Physical Review D, vol. 93, jan 2016.
  50. A. A. Graham and R. Jha, “Nonexistence of black holes with noncanonical scalar fields,” Physical Review D, vol. 89, apr 2014.
  51. T. Jacobson, “Primordial black hole evolution in tensor-scalar cosmology,” Physical Review Letters, vol. 83, pp. 2699–2702, oct 1999.
  52. C. Charmousis, M. Crisostomi, R. Gregory, and N. Stergioulas, “Rotating Black Holes in Higher Order Gravity,” Phys. Rev. D, vol. 100, no. 8, p. 084020, 2019.
  53. K. Takahashi and H. Motohashi, “General relativity solutions with stealth scalar hair in quadratic higher-order scalar-tensor theories,” Journal of Cosmology and Astroparticle Physics, vol. 2020, pp. 034–034, jun 2020.
  54. K. V. Aelst, E. Gourgoulhon, P. Grandclément, and C. Charmousis, “Hairy rotating black holes in cubic galileon theory,” Classical and Quantum Gravity, vol. 37, p. 035007, jan 2020.
  55. L. Hui and A. Nicolis, “No-Hair Theorem for the Galileon,” Phys. Rev. Lett., vol. 110, p. 241104, 2013.
  56. D. Glavan and C. Lin, “Einstein-gauss-bonnet gravity in four-dimensional spacetime,” Physical Review Letters, vol. 124, feb 2020.
  57. P. G. S. Fernandes, P. Carrilho, T. Clifton, and D. J. Mulryne, “The 4d einstein–gauss–bonnet theory of gravity: a review,” Classical and Quantum Gravity, vol. 39, p. 063001, feb 2022.
  58. T. P. Sotiriou and S.-Y. Zhou, “Black hole hair in generalized scalar-tensor gravity,” Phys. Rev. Lett., vol. 112, p. 251102, 2014.
  59. T. P. Sotiriou and S.-Y. Zhou, “Black hole hair in generalized scalar-tensor gravity: An explicit example,” Physical Review D, vol. 90, dec 2014.
  60. P. Kanti, N. E. Mavromatos, J. Rizos, K. Tamvakis, and E. Winstanley, “Dilatonic black holes in higher curvature string gravity,” Physical Review D, vol. 54, pp. 5049–5058, oct 1996.
  61. M. Gürses, “Some solutions of the Gauss Bonnet gravity with scalar field in four dimensions,” General Relativity and Gravitation, vol. 40, pp. 1825–1830, Sept. 2008.
  62. C. A. Herdeiro, E. Radu, H. O. Silva, T. P. Sotiriou, and N. Yunes, “Spin-induced scalarized black holes,” Physical Review Letters, vol. 126, jan 2021.
  63. A. Dima, E. Barausse, N. Franchini, and T. P. Sotiriou, “Spin-induced black hole spontaneous scalarization,” Physical Review Letters, vol. 125, dec 2020.
  64. W. D. Goldberger and I. Z. Rothstein, “An Effective field theory of gravity for extended objects,” Phys. Rev. D, vol. 73, p. 104029, 2006.
  65. R. A. Porto, “The effective field theorist’s approach to gravitational dynamics,” Phys. Rept., vol. 633, pp. 1–104, 2016.
  66. L. Hui, A. Joyce, R. Penco, L. Santoni, and A. R. Solomon, “Static response and Love numbers of Schwarzschild black holes,” JCAP, vol. 04, p. 052, 2021.
  67. J. M. Bardeen, “Rapidly rotating stars, disks, and black holes.,” in Black Holes (Les Astres Occlus), pp. 241–289, Jan. 1973.
  68. G. Darboux, Leçons sur les systémes orthogonaux et les coordonnées curvilignes. Cours de geometrie de la faculté des sciences, GAuthier Villars, 1910.
  69. S. Chandrasekhar, The Mathematical Theory of Black Holes. International series of monographs on physics, Oxford University Press, 1992.
  70. B. Carter, “Axisymmetric black hole has only two degrees of freedom,” Phys. Rev. Lett., vol. 26, pp. 331–333, Feb 1971.
  71. J. D. Bekenstein, “Nonexistence of baryon number for black holes. ii.,” Phys. Rev., D 5: No. 10, 2403-12(15 May 1972)., 1 1972.
  72. M. Saravani and T. P. Sotiriou, “Classification of shift-symmetric horndeski theories and hairy black holes,” Physical Review D, vol. 99, jun 2019.
  73. R. Benkel, N. Franchini, M. Saravani, and T. P. Sotiriou, “Causal structure of black holes in shift-symmetric horndeski theories,” Physical Review D, vol. 98, sep 2018.
  74. K. Yagi, “New constraint on scalar gauss-bonnet gravity and a possible explanation for the excess of the orbital decay rate in a low-mass x-ray binary,” Physical Review D, vol. 86, oct 2012.
  75. J. D. Bekenstein, “Nonexistence of baryon number for static black holes,” Phys. Rev. D, vol. 5, pp. 1239–1246, Mar 1972.
  76. R. Emparan and H. S. Reall, “Black Holes in Higher Dimensions,” Living Rev. Rel., vol. 11, p. 6, 2008.
  77. R. Myers and M. Perry, “Black holes in higher dimensional space-times,” Annals of Physics, vol. 172, no. 2, pp. 304–347, 1986.
  78. A. A. H. Graham and R. Jha, “Stationary Black Holes with Time-Dependent Scalar Fields,” Phys. Rev. D, vol. 90, no. 4, p. 041501, 2014.
  79. S. Mukohyama, “Black holes in the ghost condensate,” Phys. Rev. D, vol. 71, p. 104019, 2005.
  80. E. Babichev and C. Charmousis, “Dressing a black hole with a time-dependent Galileon,” JHEP, vol. 08, p. 106, 2014.
  81. T. Kobayashi and N. Tanahashi, “Exact black hole solutions in shift symmetric scalar–tensor theories,” PTEP, vol. 2014, p. 073E02, 2014.
  82. J. Ben Achour and H. Liu, “Hairy Schwarzschild-(A)dS black hole solutions in degenerate higher order scalar-tensor theories beyond shift symmetry,” Phys. Rev. D, vol. 99, no. 6, p. 064042, 2019.
  83. H. Motohashi and M. Minamitsuji, “Exact black hole solutions in shift-symmetric quadratic degenerate higher-order scalar-tensor theories,” Phys. Rev. D, vol. 99, no. 6, p. 064040, 2019.
  84. O. Ramos and E. Barausse, “Constraints on Hořava gravity from binary black hole observations,” Phys. Rev. D, vol. 99, no. 2, p. 024034, 2019. [Erratum: Phys.Rev.D 104, 069904 (2021)].
  85. E. Barausse and K. Yagi, “Gravitation-wave emission in shift-symmetric horndeski theories,” Physical Review Letters, vol. 115, nov 2015.
  86. P. Creminelli, N. Loayza, F. Serra, E. Trincherini, and L. G. Trombetta, “Hairy black-holes in shift-symmetric theories,” Journal of High Energy Physics, vol. 2020, aug 2020.
  87. K. Nakashi and M. Kimura, “Towards rotating noncircular black holes in string-inspired gravity,” Physical Review D, vol. 102, oct 2020.
  88. Y. Xie, J. Zhang, H. O. Silva, C. de Rham, H. Witek, and N. Yunes, “Square peg in a circular hole: Choosing the right ansatz for isolated black holes in generic gravitational theories,” Physical Review Letters, vol. 126, jun 2021.
  89. T. Anson, E. Babichev, C. Charmousis, and M. Hassaine, “Disforming the kerr metric,” Journal of High Energy Physics, vol. 2021, jan 2021.
  90. J. B. Achour, H. Liu, H. Motohashi, S. Mukohyama, and K. Noui, “On rotating black holes in DHOST theories,” Journal of Cosmology and Astroparticle Physics, vol. 2020, pp. 001–001, nov 2020.
  91. Y. Takamori, A. Naruko, Y. Sakurai, K. Takahashi, D. Yamauchi, and C.-M. Yoo, “Testing the Non-circularity of the Spacetime around Sagittarius A* with Orbiting Pulsars,” , 8 2021.
  92. V. A. Rubakov, “The Null Energy Condition and its violation,” Phys. Usp., vol. 57, pp. 128–142, 2014.
  93. G. Franciolini, L. Hui, R. Penco, L. Santoni, and E. Trincherini, “Stable wormholes in scalar-tensor theories,” JHEP, vol. 01, p. 221, 2019.
  94. H. O. Silva, J. Sakstein, L. Gualtieri, T. P. Sotiriou, and E. Berti, “Spontaneous scalarization of black holes and compact stars from a gauss-bonnet coupling,” Physical Review Letters, vol. 120, mar 2018.
  95. D. D. Doneva and S. S. Yazadjiev, “New gauss-bonnet black holes with curvature-induced scalarization in extended scalar-tensor theories,” Phys. Rev. Lett., vol. 120, p. 131103, Mar 2018.
  96. T. Damour, N. Deruelle, and R. Ruffini, “On Quantum Resonances in Stationary Geometries,” Lett. Nuovo Cim., vol. 15, pp. 257–262, 1976.
  97. T. J. M. Zouros and D. M. Eardley, “INSTABILITIES OF MASSIVE SCALAR PERTURBATIONS OF A ROTATING BLACK HOLE,” Annals Phys., vol. 118, pp. 139–155, 1979.
  98. S. L. Detweiler, “KLEIN-GORDON EQUATION AND ROTATING BLACK HOLES,” Phys. Rev. D, vol. 22, pp. 2323–2326, 1980.
  99. S. R. Dolan, “Instability of the massive klein-gordon field on the kerr spacetime,” Physical Review D, vol. 76, oct 2007.
  100. A. Dima and E. Barausse, “Numerical investigation of plasma-driven superradiant instabilities,” Classical and Quantum Gravity, vol. 37, p. 175006, aug 2020.
  101. L. Hui, A. Joyce, R. Penco, L. Santoni, and A. R. Solomon, “Ladder symmetries of black holes. Implications for love numbers and no-hair theorems,” JCAP, vol. 01, no. 01, p. 032, 2022.
  102. L. Hui, A. Joyce, R. Penco, L. Santoni, and A. R. Solomon, “Near-zone symmetries of Kerr black holes,” JHEP, vol. 09, p. 049, 2022.
  103. E. Barausse, N. Yunes, and K. Chamberlain, “Theory-agnostic constraints on black-hole dipole radiation with multiband gravitational-wave astrophysics,” Physical Review Letters, vol. 116, jun 2016.
  104. G. Franciolini, L. Hui, R. Penco, L. Santoni, and E. Trincherini, “Effective Field Theory of Black Hole Quasinormal Modes in Scalar-Tensor Theories,” JHEP, vol. 02, p. 127, 2019.
  105. L. Hui, A. Podo, L. Santoni, and E. Trincherini, “Effective Field Theory for the perturbations of a slowly rotating black hole,” JHEP, vol. 12, p. 183, 2021.
  106. B. Carter, “Killing horizons and orthogonally transitive groups in space-time,” Journal of Mathematical Physics, vol. 10, no. 1, pp. 70–81, 1969.
Citations (10)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.