Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Local Limit Theorems and Strong Approximations for Robbins-Monro Procedures (2304.10673v1)

Published 20 Apr 2023 in math.PR

Abstract: The Robbins-Monro algorithm is a recursive, simulation-based stochastic procedure to approximate the zeros of a function that can be written as an expectation. It is known that under some technical assumptions, Gaussian limit distributions approximate the stochastic performance of the algorithm. Here, we are interested in strong approximations for Robbins-Monro procedures. The main tool for getting them are local limit theorems, that is, studying the convergence of the density of the algorithm. The analysis relies on a version of parametrix techniques for Markov chains converging to diffusions. The main difficulty that arises here is the fact that the drift is unbounded.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: