Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Capacity of Summation over a Symmetric Quantum Erasure MAC with Partially Replicated Inputs (2311.08386v4)

Published 14 Nov 2023 in cs.IT and math.IT

Abstract: The optimal quantum communication cost of computing a classical sum of distributed sources is studied over a quantum erasure multiple access channel (QEMAC). K classical messages comprised of finite-field symbols are distributed across $S$ servers, who also share quantum entanglement in advance. Each server $s\in[S]$ manipulates its quantum subsystem $\mathcal{Q}_s$ according to its own available classical messages and sends $\mathcal{Q}_s$ to the receiver who then computes the sum of the messages based on a joint quantum measurement. The download cost from Server $s\in [S]$ is the logarithm of the dimension of $\mathcal{Q}_s$. The rate $R$ is defined as the number of instances of the sum computed at the receiver, divided by the total download cost from all the servers. The main focus is on the symmetric setting with $K= {S \choose \alpha} $ messages where each message is replicated among a unique subset of $\alpha$ servers, and the answers from any $\beta$ servers may be erased. If no entanglement is initially available to the receiver, then we show that the capacity (maximal rate) is precisely $C= \max\left{ \min \left{ \frac{2(\alpha-\beta)}{S}, \frac{S-2\beta}{S} \right}, \frac{\alpha-\beta}{S} \right}$. The capacity with arbitrary levels of prior entanglement $(\Delta_0)$ between the $S$ data-servers and the receiver is also characterized, by including an auxiliary server (Server $0$) that has no classical data, so that the communication cost from Server $0$ is a proxy for the amount of receiver-side entanglement that is available in advance. The challenge on the converse side resides in the optimal application of the weak monotonicity property, while the achievability combines ideas from classical network coding and treating qudits as classical dits, as well as new constructions based on the $N$-sum box abstraction that rely on absolutely maximally entangled quantum states.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. E. Schrodinger, “Discussion of probability relations between separated systems,” Proceedings of the Cambridge Philosophical Society, p. 31: 555–563; 32 (1936): 446–451, 1936.
  2. A. S. Cacciapuoti, M. Caleffi, R. V. Meter, and L. Hanzo, “When entanglement meets classical communications: Quantum teleportation for the quantum internet,” IEEE Transactions on Communications, vol. 68, no. 6, pp. 3808–3833, March 2020.
  3. M. Hayashi and Á. Vázquez-Castro, “Computation-aided classical-quantum multiple access to boost network communication speeds,” Physical Review Applied, vol. 16, no. 5, p. 054021, 2021.
  4. M. A. Sohail, T. A. Atif, A. Padakandla, and S. S. Pradhan, “Computing sum of sources over a classical-quantum MAC,” IEEE Transactions on Information Theory, vol. 68, no. 12, pp. 7913–7934, 2022.
  5. M. Hayashi and S. Song, “Unified approach to secret sharing and symmetric private information retrieval with colluding servers in quantum systems,” 2023. [Online]. Available: https://arxiv.org/abs/2205.14622
  6. S. Song and M. Hayashi, “Capacity of quantum private information retrieval with multiple servers,” IEEE Transactions on Information Theory, vol. 67, no. 1, pp. 452–463, 2020.
  7. ——, “Capacity of quantum private information retrieval with colluding servers,” IEEE Transactions on Information Theory, vol. 67, no. 8, pp. 5491–5508, 2021.
  8. M. Allaix, S. Song, L. Holzbaur, T. Pllaha, M. Hayashi, and C. Hollanti, “On the capacity of quantum private information retrieval from MDS-coded and colluding servers,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 3, pp. 885–898, 2022.
  9. S. Song and M. Hayashi, “Capacity of quantum symmetric private information retrieval with collusion of all but one of servers,” IEEE Journal on Selected Areas in Information Theory, vol. 2, no. 1, pp. 380–390, 2021.
  10. M. Allaix, L. Holzbaur, T. Pllaha, and C. Hollanti, “Quantum private information retrieval from coded and colluding servers,” IEEE Journal on Selected Areas in Information Theory, vol. 1, no. 2, pp. 599–610, 2020.
  11. M. Allaix, Y. Lu, Y. Yao, T. Pllaha, C. Hollanti, and S. Jafar, “N𝑁Nitalic_N-sum box: An abstraction for linear computation over many-to-one quantum networks,” 2023. [Online]. Available: https://arxiv.org/abs/2304.07561
  12. A. Aytekin, M. Nomeir, S. Vithana, and S. Ulukus, “Quantum symmetric private information retrieval with secure storage and eavesdroppers,” 2023. [Online]. Available: https://arxiv.org/abs/2308.10883
  13. Y. Yao and S. A. Jafar, “The capacity of classical summation over a quantum MAC with arbitrarily distributed inputs and entanglements,” 2023. [Online]. Available: https://arxiv.org/abs/2305.03122
  14. S. Jafar, “Interference alignment: A new look at signal dimensions in a communication network,” in Foundations and Trends in Communication and Information Theory, 2011, pp. 1–136.
  15. R. Ahlswede, N. Cai, S.-Y. Li, and R. Yeung, “Network information flow,” IEEE Transactions on Information Theory, vol. 46, no. 4, pp. 1204–1216, 2000.
  16. H. Wei, M. Xu, and G. Ge, “Robust network function computation,” IEEE Transactions on Information Theory (Early Access), 2023.
  17. R. F. Werner, “All teleportation and dense coding schemes,” Journal of Physics A: Mathematical and General, vol. 34, no. 35, p. 7081, 2001.
  18. Z. Shadman, H. Kampermann, D. Bruß, and C. Macchiavello, “Distributed superdense coding over noisy channels,” Phys. Rev. A, vol. 85, p. 052306, May 2012. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.85.052306
  19. M. Mamindlapally and A. Winter, “Singleton bounds for entanglement-assisted classical and quantum error correcting codes,” IEEE Transactions on Information Theory, 2023.
  20. M. Chehimi and W. Saad, “Physics-informed quantum communication networks: A vision toward the quantum internet,” IEEE Network, vol. 36, no. 5, pp. 32–38, November 2022.
  21. A. Avestimehr, S. Diggavi, C. Tian, and D. Tse, “An approximation approach to network information theory,” in Foundations and Trends in Communication and Information Theory, vol. 12, 2015, pp. 1–183.
  22. B. K. Rai and B. K. Dey, “On network coding for sum-networks,” IEEE Transactions on Information Theory, vol. 58, no. 1, pp. 50–63, 2012.
  23. A. Ramamoorthy and M. Langberg, “Communicating the sum of sources over a network,” IEEE Journal on Selected Areas in Communications, vol. 31, no. 4, pp. 655–665, 2013.
  24. B. M. Terhal, “Quantum error correction for quantum memories,” Rev. Mod. Phys., vol. 87, pp. 307–346, Apr 2015. [Online]. Available: https://link.aps.org/doi/10.1103/RevModPhys.87.307
  25. A. S. Holevo, “Bounds for the quantity of information transmitted by a quantum communication channel,” Problemy Peredachi Informatsii, vol. 9, no. 3, pp. 3–11, 1973.
  26. N. Pippenger, “The inequalities of quantum information theory,” IEEE Transactions on Information Theory, vol. 49, no. 4, pp. 773–789, 2003.
  27. H. Araki and E. H. Lieb, “Entropy inequalities,” Communications in Mathematical Physics, vol. 18, no. 2, pp. 160–170, 1970.
  28. D. Bruß, G. M. D’Ariano, M. Lewenstein, C. Macchiavello, A. Sen, U. Sen et al., “Distributed quantum dense coding,” Physical review letters, vol. 93, no. 21, p. 210501, 2004.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com