Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PPG Signals for Hypertension Diagnosis: A Novel Method using Deep Learning Models (2304.06952v1)

Published 14 Apr 2023 in cs.LG, eess.SP, and physics.med-ph

Abstract: Hypertension is a medical condition characterized by high blood pressure, and classifying it into its various stages is crucial to managing the disease. In this project, a novel method is proposed for classifying stages of hypertension using Photoplethysmography (PPG) signals and deep learning models, namely AvgPool_VGG-16. The PPG signal is a non-invasive method of measuring blood pressure through the use of light sensors that measure the changes in blood volume in the microvasculature of tissues. PPG images from the publicly available blood pressure classification dataset were used to train the model. Multiclass classification for various PPG stages were done. The results show the proposed method achieves high accuracy in classifying hypertension stages, demonstrating the potential of PPG signals and deep learning models in hypertension diagnosis and management.

Citations (3)

Summary

We haven't generated a summary for this paper yet.