Papers
Topics
Authors
Recent
Search
2000 character limit reached

Difficult Lessons on Social Prediction from Wisconsin Public Schools

Published 13 Apr 2023 in cs.CY, cs.LG, econ.GN, q-fin.EC, and stat.AP | (2304.06205v2)

Abstract: Early warning systems (EWS) are predictive tools at the center of recent efforts to improve graduation rates in public schools across the United States. These systems assist in targeting interventions to individual students by predicting which students are at risk of dropping out. Despite significant investments in their widespread adoption, there remain large gaps in our understanding of the efficacy of EWS, and the role of statistical risk scores in education. In this work, we draw on nearly a decade's worth of data from a system used throughout Wisconsin to provide the first large-scale evaluation of the long-term impact of EWS on graduation outcomes. We present empirical evidence that the prediction system accurately sorts students by their dropout risk. We also find that it may have caused a single-digit percentage increase in graduation rates, though our empirical analyses cannot reliably rule out that there has been no positive treatment effect. Going beyond a retrospective evaluation of DEWS, we draw attention to a central question at the heart of the use of EWS: Are individual risk scores necessary for effectively targeting interventions? We propose a simple mechanism that only uses information about students' environments -- such as their schools, and districts -- and argue that this mechanism can target interventions just as efficiently as the individual risk score-based mechanism. Our argument holds even if individual predictions are highly accurate and effective interventions exist. In addition to motivating this simple targeting mechanism, our work provides a novel empirical backbone for the robust qualitative understanding among education researchers that dropout is structurally determined. Combined, our insights call into question the marginal value of individual predictions in settings where outcomes are driven by high levels of inequality.

Citations (17)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.