Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

Using Large Language Models for (De-)Formalization and Natural Argumentation Exercises for Beginner's Students (2304.06186v3)

Published 12 Apr 2023 in cs.CL and math.LO

Abstract: We describe two systems currently being developed that use LLMs for the automatized correction of (i) exercises in translating back and forth between natural language and the languages of propositional logic and first-order predicate logic and (ii) exercises in writing simple arguments in natural language in non-mathematical scenarios.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (16)
  1. Edukera Homepage. https://www.edukera.com/.
  2. ArXiv, 10.48550/arXiv.2302.12433. arXiv:https://arxiv.org/abs/arXiv:2302.12433v1.
  3. Heinrich Behmann (1922): Beiträge zur Algebra der Logik, insbesondere zum Entscheidungsproblem. Mathematische Annalen 86, pp. 163–229, 10.1007/BF01457985.
  4. Merlin Carl (2020): Automatized Evaluatoin of Formalization Exercises in Mathematics, 10.48550/arXiv.2303.17513. ArXiv:2006.01800v2.
  5. Merlin Carl (2020): Number Theory and Axiomatic Geometry in the Diproche System. Electronic Proceedings in Theoretical Computer Science 328, pp. 56–78, 10.4204/EPTCS.328.4.
  6. Merlin Carl (2020): Using Automated Theorem Provers for Mistake Diagnosis in the Didactics of Mathematics, 10.48550/arXiv.2002.05083. ArXiv:2002.05083v1.
  7. Merlin Carl (2023): Improving the Diproche CNL through autoformalization via GPT-3. arXiv:https://arxiv.org/abs/arXiv:2303.17513.
  8. Merlin Carl & Regula Krapf (2020): Diproche - ein automatisierter Tutor für den Einstieg ins Beweisen. In: Digitale Kompetenzen und Curriculare Konsequenzen, pp. 43–56.
  9. Marcos Cramer (2013): Proof-checking mathematical texts in controlled natural language. Ph.D. thesis, Rheinische Friedrich-Wilhelms-Universität Bonn”.
  10. In Jasmin Blanchette, James H. Davenport, Peter Koepke, Michael Kohlhase, Andrea Kohlhase, Adam Naumowicz, Dennis Müller, Yasmine Sharoda & Claudio Sacerdoti Coen, editors: Joint Proceedings of the FMM, FVPS, MathUI,NatFoM, and OpenMath Workshops, Doctoral Program, and Work in Progress at the Conference on Intelligent Computer Mathematics 2021 co-located with the 14th Conference on Intelligent Computer Mathematics (CICM 2021), Virtual Event, Timisoara, Romania, July 26 - 31, 2021, CEUR Workshop Proceedings 3377, CEUR-WS.org. Available at https://ceur-ws.org/Vol-3377/natfom5.pdf.
  11. Leon Henkin (1967): Logical Systems Containing Only a Finite Number of Symbols. Presses de l’Universite de Montreal, Montreal,.
  12. George Lakoff & Rafel E. Núñez (2001): Where mathematics comes from : how the embodied mind brings mathematics into being. Basic Books.
  13. A. Moreno & N. Budesca (2000): Mathematical Logic Tutor-Propositional Calculus. In: First International Congress on Tools for Teaching Logic, pp. 99–106.
  14. In: CPP 2020: Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs, pp. 85–98, 10.1145/3372885.3373827.
  15. Konstantin Verchinine, Alexander V. Lyaletski & Andrei Paskevich (2007): System for Automated Deduction (SAD): A Tool for Proof Verification. In: Automated Deduction – CADE-21. CADE 2007., 4603, Springer, Berlin, Heidelberg., 10.1007/978-3-540-73595-3_29. Available at https://api.semanticscholar.org/CorpusID:6915907.
  16. In: 36th Conference on Neural Information Processing Systems (NeurIPS), 10.48550/arXiv.2205.12615.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com