Combinatorial Statistics on Pattern-avoiding Permutations
Abstract: The study of Mahonian statistics dated back to 1915 when MacMahon showed that the major index and the inverse number have the same distribution on a set of permutations with length n. Since then, many Mahonian statistics have been discovered and much effort have been done to find the equidistribution between two Mahonian statistics on permutations avoiding length-3 classical patterns. In recent years, Amini and Do et al. have done extensive research with various methods to prove the equidistributions, ranging from using generating functions, Dyck paths, block decompositions, to bijections. In this thesis, we will solve the conjectured equidistribution between bast and foze on Av(312) using the bijection method, as well as refine two established results by Do et al. with a combinatorial approach.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.