Papers
Topics
Authors
Recent
2000 character limit reached

Quantum Conformal Prediction for Reliable Uncertainty Quantification in Quantum Machine Learning

Published 6 Apr 2023 in quant-ph, cs.IT, cs.LG, and math.IT | (2304.03398v3)

Abstract: In this work, we aim at augmenting the decisions output by quantum models with "error bars" that provide finite-sample coverage guarantees. Quantum models implement implicit probabilistic predictors that produce multiple random decisions for each input through measurement shots. Randomness arises not only from the inherent stochasticity of quantum measurements, but also from quantum gate noise and quantum measurement noise caused by noisy hardware. Furthermore, quantum noise may be correlated across shots and it may present drifts in time. This paper proposes to leverage such randomness to define prediction sets for both classification and regression that provably capture the uncertainty of the model. The approach builds on probabilistic conformal prediction (PCP), while accounting for the unique features of quantum models. Among the key technical innovations, we introduce a new general class of non-conformity scores that address the presence of quantum noise, including possible drifts. Experimental results, using both simulators and current quantum computers, confirm the theoretical calibration guarantees of the proposed framework.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.