Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Quantitative $C^1$-stability of spheres in rank one symmetric spaces of non-compact type (2304.02412v1)

Published 5 Apr 2023 in math.DG

Abstract: We prove that in any rank one symmetric space of non-compact type $M\in{\mathbb{R} Hn,\mathbb{C} Hm,\mathbb{H} Hm,\mathbb{O} H2}$, geodesic spheres are uniformly quantitatively stable with respect to small $C1$-volume preserving perturbations. We quantify the gain of perimeter in terms of the $W{1,2}$-norm of the perturbation, taking advantage of the explicit spectral gap of the Laplacian on geodesic spheres in $M$. As a consequence, we give a quantitative proof that for small volumes, geodesic spheres are isoperimetric regions among all sets of finite perimeter.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.