Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AutoLabel: CLIP-based framework for Open-set Video Domain Adaptation (2304.01110v2)

Published 3 Apr 2023 in cs.CV

Abstract: Open-set Unsupervised Video Domain Adaptation (OUVDA) deals with the task of adapting an action recognition model from a labelled source domain to an unlabelled target domain that contains "target-private" categories, which are present in the target but absent in the source. In this work we deviate from the prior work of training a specialized open-set classifier or weighted adversarial learning by proposing to use pre-trained Language and Vision Models (CLIP). The CLIP is well suited for OUVDA due to its rich representation and the zero-shot recognition capabilities. However, rejecting target-private instances with the CLIP's zero-shot protocol requires oracle knowledge about the target-private label names. To circumvent the impossibility of the knowledge of label names, we propose AutoLabel that automatically discovers and generates object-centric compositional candidate target-private class names. Despite its simplicity, we show that CLIP when equipped with AutoLabel can satisfactorily reject the target-private instances, thereby facilitating better alignment between the shared classes of the two domains. The code is available.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub