Safety Under Uncertainty: Tight Bounds with Risk-Aware Control Barrier Functions
Abstract: We propose a novel class of risk-aware control barrier functions (RA-CBFs) for the control of stochastic safety-critical systems. Leveraging a result from the stochastic level-crossing literature, we deviate from the martingale theory that is currently used in stochastic CBF techniques and prove that a RA-CBF based control synthesis confers a tighter upper bound on the probability of the system becoming unsafe within a finite time interval than existing approaches. We highlight the advantages of our proposed approach over the state-of-the-art via a comparative study on an mobile-robot example, and further demonstrate its viability on an autonomous vehicle highway merging problem in dense traffic.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.